File size: 7,803 Bytes
84c45b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import gradio as gr 
from transformers import AutoModelForCausalLM,AutoProcessor,Qwen2VLForConditionalGeneration
from PIL import Image
import os 
import tempfile
import torch
from pathlib import Path
import secrets

model = Qwen2VLForConditionalGeneration.from_pretrained(
    "Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)

processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
math_messages = []
def process_image(image, shouldConvert=False):
    global math_messages
    math_messages = [] # reset when upload image
    uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(
        Path(tempfile.gettempdir()) / "gradio"
    )
    os.makedirs(uploaded_file_dir, exist_ok=True)
    
    name = f"tmp{secrets.token_hex(20)}.jpg"
    filename = os.path.join(uploaded_file_dir, name)
    if shouldConvert:
        new_img = Image.new('RGB', size=(image.width, image.height), color=(255, 255, 255))
        new_img.paste(image, (0, 0), mask=image)
        image = new_img
    image.save(filename)
    
    messages = [{
        'role': 'system',
        'content': [{'text': 'You are a helpful assistant.'}]
    }, {
        'role': 'user',
        'content': [
            {'image': f'file://{filename}'},
            {'text': 'Please describe the math-related content in this image, ensuring that any LaTeX formulas are correctly transcribed. Non-mathematical details do not need to be described.'}
        ]
    }]
    
    text_prompt = processor.apply_chat_template(messages, add_generation_prompt=True)

    inputs = processor(
        text = [text_prompt],
        images = [image],
        padding = True,
        return_tensors = "pt"
    )


    output_ids = model.generate(**inputs, max_new_tokens=1024)

    generated_ids = [
        output_ids[len(input_ids) :]
        for input_ids, output_ids in zip(inputs.input_ids, output_ids)
    ]

    output_text = processor.batch_decode(
        generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
    )
    
    os.remove(filename)
    
    return output_text



def get_math_response(image_description, user_question):
    global math_messages
    if not math_messages:
        math_messages.append({'role': 'system', 'content': 'You are a helpful math assistant.'})
    math_messages = math_messages[:1]
    if image_description is not None:
        content = f'Image description: {image_description}\n\n'
    else:
        content = ''
    query = f"{content}User question: {user_question}"
    math_messages.append({'role': 'user', 'content': query})
    from transformers import AutoModelForCausalLM, AutoTokenizer

    model_name = "Qwen/Qwen2-Math-72B-Instruct"
    device = "cuda" # the device to load the model onto

    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype="auto",
        device_map="auto"
    )
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    text = tokenizer.apply_chat_template(
        math_messages,
        tokenize=False,
        add_generation_prompt=True
    )
    model_inputs = tokenizer([text], return_tensors="pt").to(device)

    generated_ids = model.generate(
        **model_inputs,
        max_new_tokens=512
    )
    generated_ids = [
        output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
    ]

    response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

    answer = None
    for resp in response:
        if resp.output is None:
            continue
        answer = resp.output.choices[0].message.content
        yield answer.replace("\\", "\\\\")
    print(f'query: {query}\nanswer: {answer}')
    if answer is None:
        math_messages.pop()
    else:
        math_messages.append({'role': 'assistant', 'content': answer})
def math_chat_bot(image, sketchpad, question, state):
    current_tab_index = state["tab_index"]
    image_description = None
    # Upload
    if current_tab_index == 0:
        if image is not None:
            image_description = process_image(image)
    # Sketch
    elif current_tab_index == 1:
        print(sketchpad)
        if sketchpad and sketchpad["composite"]:
            image_description = process_image(sketchpad["composite"], True)
    yield from get_math_response(image_description, question)

css = """
#qwen-md .katex-display { display: inline; }
#qwen-md .katex-display>.katex { display: inline; }
#qwen-md .katex-display>.katex>.katex-html { display: inline; }
"""

def tabs_select(e: gr.SelectData, _state):
    _state["tab_index"] = e.index


# 创建Gradio接口
with gr.Blocks(css=css) as demo:
    gr.HTML("""\
<p align="center"><img src="https://modelscope.oss-cn-beijing.aliyuncs.com/resource/qwen.png" style="height: 60px"/><p>"""
            """<center><font size=8>📖 Qwen2-Math Demo</center>"""
            """\
<center><font size=3>This WebUI is based on Qwen2-VL for OCR and Qwen2-Math for mathematical reasoning. You can input either images or texts of mathematical or arithmetic problems.</center>"""
            )
    state = gr.State({"tab_index": 0})
    with gr.Row():
        with gr.Column():
            with gr.Tabs() as input_tabs:
                with gr.Tab("Upload"):
                    input_image = gr.Image(type="pil", label="Upload"),
                with gr.Tab("Sketch"):
                    input_sketchpad = gr.Sketchpad(type="pil", label="Sketch", layers=False)
            input_tabs.select(fn=tabs_select, inputs=[state])
            input_text = gr.Textbox(label="input your question")
            with gr.Row():
                with gr.Column():
                    clear_btn = gr.ClearButton(
                        [*input_image, input_sketchpad, input_text])
                with gr.Column():
                    submit_btn = gr.Button("Submit", variant="primary")
        with gr.Column():
            output_md = gr.Markdown(label="answer",
                                    latex_delimiters=[{
                                        "left": "\\(",
                                        "right": "\\)",
                                        "display": True
                                    }, {
                                        "left": "\\begin\{equation\}",
                                        "right": "\\end\{equation\}",
                                        "display": True
                                    }, {
                                        "left": "\\begin\{align\}",
                                        "right": "\\end\{align\}",
                                        "display": True
                                    }, {
                                        "left": "\\begin\{alignat\}",
                                        "right": "\\end\{alignat\}",
                                        "display": True
                                    }, {
                                        "left": "\\begin\{gather\}",
                                        "right": "\\end\{gather\}",
                                        "display": True
                                    }, {
                                        "left": "\\begin\{CD\}",
                                        "right": "\\end\{CD\}",
                                        "display": True
                                    }, {
                                        "left": "\\[",
                                        "right": "\\]",
                                        "display": True
                                    }],
                                    elem_id="qwen-md")
        submit_btn.click(
            fn=math_chat_bot,
            inputs=[*input_image, input_sketchpad, input_text, state],
            outputs=output_md)
demo.launch()