mathChatBot / app.py
Ayush0804's picture
Update app.py
57e9f16 verified
raw
history blame
5 kB
from langchain.prompts import PromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
from PIL import Image
import os
import secrets
from pathlib import Path
import tempfile
import gradio as gr
# Initialize the Hugging Face BLIP model
image_captioning_model = HuggingFaceEndpoint(
endpoint_url="https://api-inference.huggingface.co/models/Salesforce/blip-image-captioning-base",
huggingfacehub_api_token=os.getenv("HUGGING_FACE_API"), # Ensure you set this in your environment
temperature=0.7,
max_new_tokens=1024,
)
math_llm=HuggingFaceEndpoint(
endpoint_url="https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Math-7B-Instruct",
huggingfacehub_api_token=os.getenv("HUGGING_FACE_API"), # Ensure you set this in your environment
temperature=0.7,
max_new_tokens=1024,)
# Function to process the image
def process_image(image, shouldConvert=False):
# Ensure temporary directory exists
uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(
Path(tempfile.gettempdir()) / "gradio"
)
os.makedirs(uploaded_file_dir, exist_ok=True)
# Save the uploaded image
name = f"tmp{secrets.token_hex(20)}.jpg"
filename = os.path.join(uploaded_file_dir, name)
if shouldConvert:
# Convert image to RGB mode if it contains transparency
new_img = Image.new("RGB", size=(image.width, image.height), color=(255, 255, 255))
new_img.paste(image, (0, 0), mask=image)
image = new_img
image.save(filename)
# Define a PromptTemplate for text instruction
template = """
You are a helpful AI assistant.
Please describe the math-related content in this image, ensuring that any LaTeX formulas are correctly transcribed.
Non-mathematical details do not need to be described.
Image Path: {image}
"""
prompt_template = PromptTemplate(
input_variables=["image"], # Dynamically insert the image path
template=template
)
# Create the text instruction by rendering the prompt template
prompt = prompt_template.format(image=f"file://{filename}")
# Use the model with both the image and the generated prompt
with open(filename, "rb") as img_file:
response = image_captioning_model({
"inputs": {
"image": img_file,
"text": prompt
}
})
# Return the model's response
return response
def get_math_response(image_description, user_question):
template = """
You are a helpful AI assistant specialized in solving math reasoning problems.
Analyze the following question carefully and provide a step-by-step explanation along with the answer.
Image description : {image_description}
Question: {user_question}?
"""
prompt_template = PromptTemplate(
input_variables=["user_question","image_description"], # Define the placeholder(s) in the template
template=template
)
formatted_prompt = prompt_template.format(user_question=user_question, image_description=image_description)
# Pass the formatted prompt to the model
response = math_llm(formatted_prompt)
# Print the response
yield response
def math_chat_bot(image, sketchpad, question, state):
current_tab_index = state["tab_index"]
image_description = None
# Upload
if current_tab_index == 0:
if image is not None:
image_description = process_image(image)
# Sketch
elif current_tab_index == 1:
print(sketchpad)
if sketchpad and sketchpad["composite"]:
image_description = process_image(sketchpad["composite"], True)
yield from get_math_response(image_description, question)
css = """
#qwen-md .katex-display { display: inline; }
#qwen-md .katex-display>.katex { display: inline; }
#qwen-md .katex-display>.katex>.katex-html { display: inline; }
"""
def tabs_select(e: gr.SelectData, _state):
_state["tab_index"] = e.index
return _state
with gr.Blocks(css=css) as demo:
state = gr.State({"tab_index": 0})
with gr.Row():
with gr.Column():
with gr.Tabs() as input_tabs:
with gr.Tab("Upload"):
input_image = gr.Image(type="pil", label="Upload")
with gr.Tab("Sketch"):
input_sketchpad = gr.Sketchpad(type="pil", label="Sketch", layers=False)
input_tabs.select(fn=tabs_select, inputs=[state], outputs=[state])
input_text = gr.Textbox(label="Input your question")
with gr.Row():
clear_btn = gr.ClearButton([input_image, input_sketchpad, input_text])
submit_btn = gr.Button("Submit", variant="primary")
with gr.Column():
output_md = gr.Markdown(label="Answer", elem_id="qwen-md")
submit_btn.click(
fn=math_chat_bot,
inputs=[input_image, input_sketchpad, input_text, state],
outputs=output_md,
)
demo.launch()