Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,162 @@
|
|
1 |
-
|
2 |
-
from
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
demo.launch()
|
|
|
1 |
+
from langchain.prompts import PromptTemplate
|
2 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
3 |
+
from PIL import Image
|
4 |
+
import os
|
5 |
+
import secrets
|
6 |
+
from pathlib import Path
|
7 |
+
import tempfile
|
8 |
|
9 |
+
# Initialize the Hugging Face BLIP model
|
10 |
+
image_captioning_model = HuggingFaceEndpoint(
|
11 |
+
endpoint_url="https://api-inference.huggingface.co/models/Salesforce/blip-image-captioning-base",
|
12 |
+
huggingfacehub_api_token=os.getenv("HUGGING_FACE_API"), # Ensure you set this in your environment
|
13 |
+
temperature=0.7,
|
14 |
+
max_new_tokens=1024,
|
15 |
+
)
|
16 |
+
math_llm=HuggingFaceEndpoint(
|
17 |
+
endpoint_url="https://api-inference.huggingface.co/models/meta-llama/Llama-3.2-3B-Instruct",
|
18 |
+
huggingfacehub_api_token=os.getenv("HUGGING_FACE_API"), # Ensure you set this in your environment
|
19 |
+
temperature=0.7,
|
20 |
+
max_new_tokens=1024,)
|
21 |
+
# Function to process the image
|
22 |
+
def process_image(image, shouldConvert=False):
|
23 |
+
# Ensure temporary directory exists
|
24 |
+
uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(
|
25 |
+
Path(tempfile.gettempdir()) / "gradio"
|
26 |
+
)
|
27 |
+
os.makedirs(uploaded_file_dir, exist_ok=True)
|
28 |
+
|
29 |
+
# Save the uploaded image
|
30 |
+
name = f"tmp{secrets.token_hex(20)}.jpg"
|
31 |
+
filename = os.path.join(uploaded_file_dir, name)
|
32 |
+
if shouldConvert:
|
33 |
+
# Convert image to RGB mode if it contains transparency
|
34 |
+
new_img = Image.new("RGB", size=(image.width, image.height), color=(255, 255, 255))
|
35 |
+
new_img.paste(image, (0, 0), mask=image)
|
36 |
+
image = new_img
|
37 |
+
image.save(filename)
|
38 |
|
39 |
+
# Define a PromptTemplate for text instruction
|
40 |
+
template = """
|
41 |
+
You are a helpful AI assistant.
|
42 |
+
Please describe the math-related content in this image, ensuring that any LaTeX formulas are correctly transcribed.
|
43 |
+
Non-mathematical details do not need to be described.
|
44 |
|
45 |
+
Image Path: {image}
|
46 |
+
"""
|
47 |
+
prompt_template = PromptTemplate(
|
48 |
+
input_variables=["image"], # Dynamically insert the image path
|
49 |
+
template=template
|
50 |
+
)
|
51 |
|
52 |
+
# Create the text instruction by rendering the prompt template
|
53 |
+
prompt = prompt_template.format(image=f"file://{filename}")
|
54 |
+
|
55 |
+
# Use the model with both the image and the generated prompt
|
56 |
+
with open(filename, "rb") as img_file:
|
57 |
+
response = image_captioning_model({
|
58 |
+
"inputs": {
|
59 |
+
"image": img_file,
|
60 |
+
"text": prompt
|
61 |
+
}
|
62 |
+
})
|
63 |
+
|
64 |
+
# Return the model's response
|
65 |
+
return response
|
66 |
+
|
67 |
+
def get_math_response(image_description, user_question):
|
68 |
+
template = """
|
69 |
+
You are a helpful AI assistant specialized in solving math reasoning problems.
|
70 |
+
Analyze the following question carefully and provide a step-by-step explanation along with the answer.
|
71 |
+
Image description : {image_description}
|
72 |
+
Question: {user_question}?
|
73 |
+
"""
|
74 |
+
|
75 |
+
prompt_template = PromptTemplate(
|
76 |
+
input_variables=["user_question","image_description"], # Define the placeholder(s) in the template
|
77 |
+
template=template
|
78 |
+
)
|
79 |
+
formatted_prompt = prompt_template.format(user_question=user_question, image_description=image_description)
|
80 |
+
|
81 |
+
# Pass the formatted prompt to the model
|
82 |
+
response = math_llm(formatted_prompt)
|
83 |
+
|
84 |
+
# Print the response
|
85 |
+
yield response
|
86 |
+
|
87 |
+
def math_chat_bot(image, sketchpad, question, state):
|
88 |
+
current_tab_index = state["tab_index"]
|
89 |
+
image_description = None
|
90 |
+
# Upload
|
91 |
+
if current_tab_index == 0:
|
92 |
+
if image is not None:
|
93 |
+
image_description = process_image(image)
|
94 |
+
# Sketch
|
95 |
+
elif current_tab_index == 1:
|
96 |
+
print(sketchpad)
|
97 |
+
if sketchpad and sketchpad["composite"]:
|
98 |
+
image_description = process_image(sketchpad["composite"], True)
|
99 |
+
yield from get_math_response(image_description, question)
|
100 |
+
css = """
|
101 |
+
#qwen-md .katex-display { display: inline; }
|
102 |
+
#qwen-md .katex-display>.katex { display: inline; }
|
103 |
+
#qwen-md .katex-display>.katex>.katex-html { display: inline; }
|
104 |
+
"""
|
105 |
+
def tabs_select(e: gr.SelectData, _state):
|
106 |
+
_state["tab_index"] = e.index
|
107 |
+
|
108 |
+
with gr.Blocks(css=css) as demo:
|
109 |
+
|
110 |
+
state = gr.State({"tab_index": 0})
|
111 |
+
with gr.Row():
|
112 |
+
with gr.Column():
|
113 |
+
with gr.Tabs() as input_tabs:
|
114 |
+
with gr.Tab("Upload"):
|
115 |
+
input_image = gr.Image(type="pil", label="Upload"),
|
116 |
+
with gr.Tab("Sketch"):
|
117 |
+
input_sketchpad = gr.Sketchpad(type="pil", label="Sketch", layers=False)
|
118 |
+
input_tabs.select(fn=tabs_select, inputs=[state])
|
119 |
+
input_text = gr.Textbox(label="input your question")
|
120 |
+
with gr.Row():
|
121 |
+
with gr.Column():
|
122 |
+
clear_btn = gr.ClearButton(
|
123 |
+
[*input_image, input_sketchpad, input_text])
|
124 |
+
with gr.Column():
|
125 |
+
submit_btn = gr.Button("Submit", variant="primary")
|
126 |
+
with gr.Column():
|
127 |
+
output_md = gr.Markdown(label="answer",
|
128 |
+
latex_delimiters=[{
|
129 |
+
"left": "\\(",
|
130 |
+
"right": "\\)",
|
131 |
+
"display": True
|
132 |
+
}, {
|
133 |
+
"left": "\\begin\{equation\}",
|
134 |
+
"right": "\\end\{equation\}",
|
135 |
+
"display": True
|
136 |
+
}, {
|
137 |
+
"left": "\\begin\{align\}",
|
138 |
+
"right": "\\end\{align\}",
|
139 |
+
"display": True
|
140 |
+
}, {
|
141 |
+
"left": "\\begin\{alignat\}",
|
142 |
+
"right": "\\end\{alignat\}",
|
143 |
+
"display": True
|
144 |
+
}, {
|
145 |
+
"left": "\\begin\{gather\}",
|
146 |
+
"right": "\\end\{gather\}",
|
147 |
+
"display": True
|
148 |
+
}, {
|
149 |
+
"left": "\\begin\{CD\}",
|
150 |
+
"right": "\\end\{CD\}",
|
151 |
+
"display": True
|
152 |
+
}, {
|
153 |
+
"left": "\\[",
|
154 |
+
"right": "\\]",
|
155 |
+
"display": True
|
156 |
+
}],
|
157 |
+
elem_id="qwen-md")
|
158 |
+
submit_btn.click(
|
159 |
+
fn=math_chat_bot,
|
160 |
+
inputs=[*input_image, input_sketchpad, input_text, state],
|
161 |
+
outputs=output_md)
|
162 |
demo.launch()
|