Ayush0804 commited on
Commit
74de6d6
·
verified ·
1 Parent(s): 3c42a34

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +140 -0
  2. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ from transformers import pipeline
4
+ from PIL import Image
5
+ import tempfile
6
+ from pathlib import Path
7
+ import secrets
8
+
9
+ # Initialising huggingface pipelines
10
+ image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
11
+ math_reasoning = pipeline("text2text-generation", model="google/flan-t5-large")
12
+
13
+
14
+ # Helper function to process images
15
+ def process_image(image, should_convert=False):
16
+ '''
17
+ Saves an uploaded image and utilises image-to-text pipeline for math-related descriptions
18
+ :param image:
19
+ :param should_convert:
20
+ :return: pipeline's output
21
+ '''
22
+ # creating a temporary directory for saving images
23
+ uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(Path(tempfile.gettempdir()) / "gradio")
24
+ os.makedirs(uploaded_file_dir, exist_ok=True)
25
+ # Save the uploaded image as a temporary file
26
+ name = f"tmp{secrets.token_hex(8)}.jpg"
27
+ filename = os.path.join(uploaded_file_dir, name)
28
+
29
+ if should_convert:
30
+ # Converts image into RGB format
31
+ new_img = Image.new("RGB", size=(image.height, image.width), color=(255, 255, 255))
32
+ new_img.paste(image, (0, 0), mask=image)
33
+ image = new_img
34
+ image.save(filename)
35
+
36
+ # Generate text description of the image
37
+ description = image_to_text(Image.open(filename))[0]['generated_text']
38
+
39
+ # Clean up file
40
+ os.remove(filename)
41
+ return description
42
+
43
+
44
+ def get_math_response(image_description, user_question):
45
+ '''
46
+ Generates a math related response based upon image description and user's question
47
+ :param image_description:
48
+ :param user_question:
49
+ '''
50
+ prompt = ""
51
+ if image_description:
52
+ prompt += f"Image Description :{image_description}\n"
53
+ if user_question:
54
+ prompt += f"User question :{user_question}\n"
55
+ else:
56
+ return "Please provide a valid description."
57
+ # Generate the response using the math_reasoning pipeline
58
+ response = math_reasoning(prompt, max_length=512)[0]['generated_text']
59
+ return response
60
+
61
+
62
+ # Combined chatbot logic
63
+ def math_chatbot(image, sketchpad, question, state):
64
+ current_tab_index = state['tab_index']
65
+ image_description = None
66
+
67
+ # Handle image upload
68
+ if current_tab_index == 0:
69
+ if image is not None:
70
+ image_description = process_image(image, )
71
+ # Handle sketchpad input
72
+ elif current_tab_index == 1:
73
+ if sketchpad and sketchpad['composite']:
74
+ image_description = process_image(sketchpad['composite'], should_convert=True)
75
+
76
+ return get_math_response(image_description, question)
77
+
78
+
79
+ css = """
80
+ #qwen-md .katex-display { display: inline; }
81
+ #qwen-md .katex-display>.katex { display: inline; }
82
+ #qwen-md .katex-display>.katex>.katex-html { display: inline; }
83
+ """
84
+
85
+
86
+ # Tab selection callback
87
+ def tabs_select(e: gr.SelectData, _state):
88
+ _state["tab_index"] = e.index
89
+
90
+
91
+ # Gradio interface
92
+ with gr.Blocks(css=css) as demo:
93
+ gr.HTML("""\
94
+ <p align="center"><img src="https://huggingface.co/front/assets/huggingface_logo.svg" style="height: 60px"/><p>"""
95
+ """<center><font size=8>📖 Math Reasoning Chatbot</center>"""
96
+ """\
97
+ <center><font size=3>This demo uses Hugging Face models for OCR and mathematical reasoning. You can input images or text-based questions.</center>"""
98
+ )
99
+ state = gr.State({"tab_index": 0})
100
+
101
+ with gr.Row():
102
+ with gr.Column():
103
+ with gr.Tabs() as input_tabs:
104
+ with gr.Tab("Upload"):
105
+ input_image = gr.Image(type="pil", label="Upload")
106
+ with gr.Tab("Sketch"):
107
+ input_sketchpad = gr.Sketchpad(label="Sketch", layers=False)
108
+ input_tabs.select(fn=tabs_select, inputs=[state])
109
+ input_text = gr.Textbox(label="Input your question")
110
+ with gr.Row():
111
+ with gr.Column():
112
+ clear_btn = gr.ClearButton([input_image, input_sketchpad, input_text])
113
+ with gr.Column():
114
+ submit_btn = gr.Button("Submit", variant="primary")
115
+
116
+ with gr.Column():
117
+ output_md = gr.Markdown(label="Answer",
118
+ latex_delimiters=[{
119
+ "left": "\\(",
120
+ "right": "\\)",
121
+ "display": True
122
+ }, {
123
+ "left": "\\begin\{equation\}",
124
+ "right": "\\end\{equation\}",
125
+ "display": True
126
+ }, {
127
+ "left": "\\[",
128
+ "right": "\\]",
129
+ "display": True
130
+ }],
131
+ elem_id="qwen-md")
132
+
133
+ submit_btn.click(
134
+ fn=math_chatbot,
135
+ inputs=[input_image, input_sketchpad, input_text, state],
136
+ outputs=output_md
137
+ )
138
+
139
+ # Launch Gradio app
140
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ transformers
2
+ pillow
3
+ gradio