Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +140 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
from transformers import pipeline
|
4 |
+
from PIL import Image
|
5 |
+
import tempfile
|
6 |
+
from pathlib import Path
|
7 |
+
import secrets
|
8 |
+
|
9 |
+
# Initialising huggingface pipelines
|
10 |
+
image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
11 |
+
math_reasoning = pipeline("text2text-generation", model="google/flan-t5-large")
|
12 |
+
|
13 |
+
|
14 |
+
# Helper function to process images
|
15 |
+
def process_image(image, should_convert=False):
|
16 |
+
'''
|
17 |
+
Saves an uploaded image and utilises image-to-text pipeline for math-related descriptions
|
18 |
+
:param image:
|
19 |
+
:param should_convert:
|
20 |
+
:return: pipeline's output
|
21 |
+
'''
|
22 |
+
# creating a temporary directory for saving images
|
23 |
+
uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(Path(tempfile.gettempdir()) / "gradio")
|
24 |
+
os.makedirs(uploaded_file_dir, exist_ok=True)
|
25 |
+
# Save the uploaded image as a temporary file
|
26 |
+
name = f"tmp{secrets.token_hex(8)}.jpg"
|
27 |
+
filename = os.path.join(uploaded_file_dir, name)
|
28 |
+
|
29 |
+
if should_convert:
|
30 |
+
# Converts image into RGB format
|
31 |
+
new_img = Image.new("RGB", size=(image.height, image.width), color=(255, 255, 255))
|
32 |
+
new_img.paste(image, (0, 0), mask=image)
|
33 |
+
image = new_img
|
34 |
+
image.save(filename)
|
35 |
+
|
36 |
+
# Generate text description of the image
|
37 |
+
description = image_to_text(Image.open(filename))[0]['generated_text']
|
38 |
+
|
39 |
+
# Clean up file
|
40 |
+
os.remove(filename)
|
41 |
+
return description
|
42 |
+
|
43 |
+
|
44 |
+
def get_math_response(image_description, user_question):
|
45 |
+
'''
|
46 |
+
Generates a math related response based upon image description and user's question
|
47 |
+
:param image_description:
|
48 |
+
:param user_question:
|
49 |
+
'''
|
50 |
+
prompt = ""
|
51 |
+
if image_description:
|
52 |
+
prompt += f"Image Description :{image_description}\n"
|
53 |
+
if user_question:
|
54 |
+
prompt += f"User question :{user_question}\n"
|
55 |
+
else:
|
56 |
+
return "Please provide a valid description."
|
57 |
+
# Generate the response using the math_reasoning pipeline
|
58 |
+
response = math_reasoning(prompt, max_length=512)[0]['generated_text']
|
59 |
+
return response
|
60 |
+
|
61 |
+
|
62 |
+
# Combined chatbot logic
|
63 |
+
def math_chatbot(image, sketchpad, question, state):
|
64 |
+
current_tab_index = state['tab_index']
|
65 |
+
image_description = None
|
66 |
+
|
67 |
+
# Handle image upload
|
68 |
+
if current_tab_index == 0:
|
69 |
+
if image is not None:
|
70 |
+
image_description = process_image(image, )
|
71 |
+
# Handle sketchpad input
|
72 |
+
elif current_tab_index == 1:
|
73 |
+
if sketchpad and sketchpad['composite']:
|
74 |
+
image_description = process_image(sketchpad['composite'], should_convert=True)
|
75 |
+
|
76 |
+
return get_math_response(image_description, question)
|
77 |
+
|
78 |
+
|
79 |
+
css = """
|
80 |
+
#qwen-md .katex-display { display: inline; }
|
81 |
+
#qwen-md .katex-display>.katex { display: inline; }
|
82 |
+
#qwen-md .katex-display>.katex>.katex-html { display: inline; }
|
83 |
+
"""
|
84 |
+
|
85 |
+
|
86 |
+
# Tab selection callback
|
87 |
+
def tabs_select(e: gr.SelectData, _state):
|
88 |
+
_state["tab_index"] = e.index
|
89 |
+
|
90 |
+
|
91 |
+
# Gradio interface
|
92 |
+
with gr.Blocks(css=css) as demo:
|
93 |
+
gr.HTML("""\
|
94 |
+
<p align="center"><img src="https://huggingface.co/front/assets/huggingface_logo.svg" style="height: 60px"/><p>"""
|
95 |
+
"""<center><font size=8>📖 Math Reasoning Chatbot</center>"""
|
96 |
+
"""\
|
97 |
+
<center><font size=3>This demo uses Hugging Face models for OCR and mathematical reasoning. You can input images or text-based questions.</center>"""
|
98 |
+
)
|
99 |
+
state = gr.State({"tab_index": 0})
|
100 |
+
|
101 |
+
with gr.Row():
|
102 |
+
with gr.Column():
|
103 |
+
with gr.Tabs() as input_tabs:
|
104 |
+
with gr.Tab("Upload"):
|
105 |
+
input_image = gr.Image(type="pil", label="Upload")
|
106 |
+
with gr.Tab("Sketch"):
|
107 |
+
input_sketchpad = gr.Sketchpad(label="Sketch", layers=False)
|
108 |
+
input_tabs.select(fn=tabs_select, inputs=[state])
|
109 |
+
input_text = gr.Textbox(label="Input your question")
|
110 |
+
with gr.Row():
|
111 |
+
with gr.Column():
|
112 |
+
clear_btn = gr.ClearButton([input_image, input_sketchpad, input_text])
|
113 |
+
with gr.Column():
|
114 |
+
submit_btn = gr.Button("Submit", variant="primary")
|
115 |
+
|
116 |
+
with gr.Column():
|
117 |
+
output_md = gr.Markdown(label="Answer",
|
118 |
+
latex_delimiters=[{
|
119 |
+
"left": "\\(",
|
120 |
+
"right": "\\)",
|
121 |
+
"display": True
|
122 |
+
}, {
|
123 |
+
"left": "\\begin\{equation\}",
|
124 |
+
"right": "\\end\{equation\}",
|
125 |
+
"display": True
|
126 |
+
}, {
|
127 |
+
"left": "\\[",
|
128 |
+
"right": "\\]",
|
129 |
+
"display": True
|
130 |
+
}],
|
131 |
+
elem_id="qwen-md")
|
132 |
+
|
133 |
+
submit_btn.click(
|
134 |
+
fn=math_chatbot,
|
135 |
+
inputs=[input_image, input_sketchpad, input_text, state],
|
136 |
+
outputs=output_md
|
137 |
+
)
|
138 |
+
|
139 |
+
# Launch Gradio app
|
140 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
pillow
|
3 |
+
gradio
|