Ayush0804 commited on
Commit
958f56e
·
verified ·
1 Parent(s): 079ef13

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -66
app.py CHANGED
@@ -6,85 +6,87 @@ import tempfile
6
  from pathlib import Path
7
  import secrets
8
 
9
- # Initialising huggingface pipelines
10
  image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
11
  math_reasoning = pipeline("text2text-generation", model="google/flan-t5-large")
12
 
13
-
14
- # Helper function to process images
15
  def process_image(image, should_convert=False):
16
- '''
17
- Saves an uploaded image and utilises image-to-text pipeline for math-related descriptions
18
- :param image:
19
- :param should_convert:
20
- :return: pipeline's output
21
- '''
22
- # creating a temporary directory for saving images
23
- uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(Path(tempfile.gettempdir()) / "gradio")
24
  os.makedirs(uploaded_file_dir, exist_ok=True)
 
25
  # Save the uploaded image as a temporary file
26
  name = f"tmp{secrets.token_hex(8)}.jpg"
27
  filename = os.path.join(uploaded_file_dir, name)
28
-
29
  if should_convert:
30
- # Converts image into RGB format
31
- new_img = Image.new("RGB", size=(image.height, image.width), color=(255, 255, 255))
32
  new_img.paste(image, (0, 0), mask=image)
33
  image = new_img
 
34
  image.save(filename)
35
-
36
  # Generate text description of the image
37
  description = image_to_text(Image.open(filename))[0]['generated_text']
38
-
39
- # Clean up file
40
  os.remove(filename)
41
  return description
42
 
43
-
44
  def get_math_response(image_description, user_question):
45
- '''
46
- Generates a math related response based upon image description and user's question
47
- :param image_description:
48
- :param user_question:
49
- '''
50
  prompt = ""
51
  if image_description:
52
- prompt += f"Image Description :{image_description}\n"
53
  if user_question:
54
- prompt += f"User question :{user_question}\n"
55
  else:
56
- return "Please provide a valid description."
57
- # Generate the response using the math_reasoning pipeline
 
58
  response = math_reasoning(prompt, max_length=512)[0]['generated_text']
59
  return response
60
 
61
-
62
  # Combined chatbot logic
63
- def math_chatbot(image, sketchpad, question, state):
64
- current_tab_index = state['tab_index']
65
  image_description = None
66
 
67
  # Handle image upload
68
  if current_tab_index == 0:
69
  if image is not None:
70
- image_description = process_image(image, )
 
71
  # Handle sketchpad input
72
  elif current_tab_index == 1:
73
- if sketchpad and sketchpad['composite']:
74
- image_description = process_image(sketchpad['composite'], should_convert=True)
75
-
 
76
  return get_math_response(image_description, question)
77
 
78
-
79
-
80
- def tabs_select(e: gr.SelectData, _state):
81
- _state["tab_index"] = e.index
82
-
83
  css = """
84
  #qwen-md .katex-display { display: inline; }
85
  #qwen-md .katex-display>.katex { display: inline; }
86
  #qwen-md .katex-display>.katex>.katex-html { display: inline; }
87
  """
 
 
 
 
 
 
88
  with gr.Blocks(css=css) as demo:
89
  gr.HTML("""\
90
  <p align="center"><img src="https://huggingface.co/front/assets/huggingface_logo.svg" style="height: 60px"/><p>"""
@@ -93,23 +95,24 @@ with gr.Blocks(css=css) as demo:
93
  <center><font size=3>This demo uses Hugging Face models for OCR and mathematical reasoning. You can input images or text-based questions.</center>"""
94
  )
95
  state = gr.State({"tab_index": 0})
 
96
  with gr.Row():
97
  with gr.Column():
98
  with gr.Tabs() as input_tabs:
99
  with gr.Tab("Upload"):
100
- input_image = gr.Image(type="pil", label="Upload"),
101
  with gr.Tab("Sketch"):
102
- input_sketchpad = gr.Sketchpad(type="pil", label="Sketch", layers=False)
103
  input_tabs.select(fn=tabs_select, inputs=[state])
104
- input_text = gr.Textbox(label="input your question")
105
  with gr.Row():
106
  with gr.Column():
107
- clear_btn = gr.ClearButton(
108
- [*input_image, input_sketchpad, input_text])
109
  with gr.Column():
110
  submit_btn = gr.Button("Submit", variant="primary")
 
111
  with gr.Column():
112
- output_md = gr.Markdown(label="answer",
113
  latex_delimiters=[{
114
  "left": "\\(",
115
  "right": "\\)",
@@ -118,30 +121,18 @@ with gr.Blocks(css=css) as demo:
118
  "left": "\\begin\{equation\}",
119
  "right": "\\end\{equation\}",
120
  "display": True
121
- }, {
122
- "left": "\\begin\{align\}",
123
- "right": "\\end\{align\}",
124
- "display": True
125
- }, {
126
- "left": "\\begin\{alignat\}",
127
- "right": "\\end\{alignat\}",
128
- "display": True
129
- }, {
130
- "left": "\\begin\{gather\}",
131
- "right": "\\end\{gather\}",
132
- "display": True
133
- }, {
134
- "left": "\\begin\{CD\}",
135
- "right": "\\end\{CD\}",
136
- "display": True
137
  }, {
138
  "left": "\\[",
139
  "right": "\\]",
140
  "display": True
141
  }],
142
  elem_id="qwen-md")
143
- submit_btn.click(
144
- fn=math_chatbot,
145
- inputs=[*input_image, input_sketchpad, input_text, state],
146
- outputs=output_md)
147
- demo.launch()
 
 
 
 
 
6
  from pathlib import Path
7
  import secrets
8
 
9
+ # Initialize Hugging Face pipelines
10
  image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
11
  math_reasoning = pipeline("text2text-generation", model="google/flan-t5-large")
12
 
13
+ # Helper function to process image
 
14
  def process_image(image, should_convert=False):
15
+ """
16
+ Saves an uploaded image and extracts math-related descriptions using the image-to-text pipeline.
17
+ """
18
+ # Create temporary directory for saving images
19
+ uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(
20
+ Path(tempfile.gettempdir()) / "gradio"
21
+ )
 
22
  os.makedirs(uploaded_file_dir, exist_ok=True)
23
+
24
  # Save the uploaded image as a temporary file
25
  name = f"tmp{secrets.token_hex(8)}.jpg"
26
  filename = os.path.join(uploaded_file_dir, name)
27
+
28
  if should_convert:
29
+ # Convert image to RGB if required
30
+ new_img = Image.new('RGB', size=(image.width, image.height), color=(255, 255, 255))
31
  new_img.paste(image, (0, 0), mask=image)
32
  image = new_img
33
+
34
  image.save(filename)
35
+
36
  # Generate text description of the image
37
  description = image_to_text(Image.open(filename))[0]['generated_text']
38
+
39
+ # Clean up temporary file
40
  os.remove(filename)
41
  return description
42
 
43
+ # Function to handle math reasoning based on question and image description
44
  def get_math_response(image_description, user_question):
45
+ """
46
+ Generates a math-related response using the image description and user question.
47
+ """
 
 
48
  prompt = ""
49
  if image_description:
50
+ prompt += f"Image description: {image_description}\n"
51
  if user_question:
52
+ prompt += f"User question: {user_question}\n"
53
  else:
54
+ return "Please provide a valid question."
55
+
56
+ # Generate a math-related response using text2text generation
57
  response = math_reasoning(prompt, max_length=512)[0]['generated_text']
58
  return response
59
 
 
60
  # Combined chatbot logic
61
+ def math_chat_bot(image, sketchpad, question, state):
62
+ current_tab_index = state["tab_index"]
63
  image_description = None
64
 
65
  # Handle image upload
66
  if current_tab_index == 0:
67
  if image is not None:
68
+ image_description = process_image(image)
69
+
70
  # Handle sketchpad input
71
  elif current_tab_index == 1:
72
+ if sketchpad and sketchpad["composite"]:
73
+ image_description = process_image(sketchpad["composite"], should_convert=True)
74
+
75
+ # Get the math reasoning response
76
  return get_math_response(image_description, question)
77
 
78
+ # CSS for formatting LaTeX
 
 
 
 
79
  css = """
80
  #qwen-md .katex-display { display: inline; }
81
  #qwen-md .katex-display>.katex { display: inline; }
82
  #qwen-md .katex-display>.katex>.katex-html { display: inline; }
83
  """
84
+
85
+ # Tab selection callback
86
+ def tabs_select(e: gr.SelectData, _state):
87
+ _state["tab_index"] = e.index
88
+
89
+ # Gradio interface
90
  with gr.Blocks(css=css) as demo:
91
  gr.HTML("""\
92
  <p align="center"><img src="https://huggingface.co/front/assets/huggingface_logo.svg" style="height: 60px"/><p>"""
 
95
  <center><font size=3>This demo uses Hugging Face models for OCR and mathematical reasoning. You can input images or text-based questions.</center>"""
96
  )
97
  state = gr.State({"tab_index": 0})
98
+
99
  with gr.Row():
100
  with gr.Column():
101
  with gr.Tabs() as input_tabs:
102
  with gr.Tab("Upload"):
103
+ input_image = gr.Image(type="pil", label="Upload")
104
  with gr.Tab("Sketch"):
105
+ input_sketchpad = gr.Sketchpad(label="Sketch", layers=False)
106
  input_tabs.select(fn=tabs_select, inputs=[state])
107
+ input_text = gr.Textbox(label="Input your question")
108
  with gr.Row():
109
  with gr.Column():
110
+ clear_btn = gr.ClearButton([input_image, input_sketchpad, input_text])
 
111
  with gr.Column():
112
  submit_btn = gr.Button("Submit", variant="primary")
113
+
114
  with gr.Column():
115
+ output_md = gr.Markdown(label="Answer",
116
  latex_delimiters=[{
117
  "left": "\\(",
118
  "right": "\\)",
 
121
  "left": "\\begin\{equation\}",
122
  "right": "\\end\{equation\}",
123
  "display": True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124
  }, {
125
  "left": "\\[",
126
  "right": "\\]",
127
  "display": True
128
  }],
129
  elem_id="qwen-md")
130
+
131
+ submit_btn.click(
132
+ fn=math_chat_bot,
133
+ inputs=[input_image, input_sketchpad, input_text, state],
134
+ outputs=output_md
135
+ )
136
+
137
+ # Launch Gradio app
138
+ demo.launch()