import gradio as gr import os from transformers import pipeline from PIL import Image import tempfile from pathlib import Path import secrets # Initialising huggingface pipelines image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") math_reasoning = pipeline("text2text-generation", model="google/flan-t5-large") # Helper function to process images def process_image(image, should_convert=False): ''' Saves an uploaded image and utilises image-to-text pipeline for math-related descriptions :param image: :param should_convert: :return: pipeline's output ''' # creating a temporary directory for saving images uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(Path(tempfile.gettempdir()) / "gradio") os.makedirs(uploaded_file_dir, exist_ok=True) # Save the uploaded image as a temporary file name = f"tmp{secrets.token_hex(8)}.jpg" filename = os.path.join(uploaded_file_dir, name) if should_convert: # Converts image into RGB format new_img = Image.new("RGB", size=(image.height, image.width), color=(255, 255, 255)) new_img.paste(image, (0, 0), mask=image) image = new_img image.save(filename) # Generate text description of the image description = image_to_text(Image.open(filename))[0]['generated_text'] # Clean up file os.remove(filename) return description def get_math_response(image_description, user_question): ''' Generates a math related response based upon image description and user's question :param image_description: :param user_question: ''' prompt = "" if image_description: prompt += f"Image Description :{image_description}\n" if user_question: prompt += f"User question :{user_question}\n" else: return "Please provide a valid description." # Generate the response using the math_reasoning pipeline response = math_reasoning(prompt, max_length=512)[0]['generated_text'] return response # Combined chatbot logic def math_chatbot(image, sketchpad, question, state): current_tab_index = state['tab_index'] image_description = None # Handle image upload if current_tab_index == 0: if image is not None: image_description = process_image(image, ) # Handle sketchpad input elif current_tab_index == 1: if sketchpad and sketchpad['composite']: image_description = process_image(sketchpad['composite'], should_convert=True) return get_math_response(image_description, question) def tabs_select(e: gr.SelectData, _state): _state["tab_index"] = e.index css = """ #qwen-md .katex-display { display: inline; } #qwen-md .katex-display>.katex { display: inline; } #qwen-md .katex-display>.katex>.katex-html { display: inline; } """ with gr.Blocks(css=css) as demo: gr.HTML("""\

""" """

📖 Math Reasoning Chatbot
""" """\
This demo uses Hugging Face models for OCR and mathematical reasoning. You can input images or text-based questions.
""" ) state = gr.State({"tab_index": 0}) with gr.Row(): with gr.Column(): with gr.Tabs() as input_tabs: with gr.Tab("Upload"): input_image = gr.Image(type="pil", label="Upload"), with gr.Tab("Sketch"): input_sketchpad = gr.Sketchpad(type="pil", label="Sketch", layers=False) input_tabs.select(fn=tabs_select, inputs=[state]) input_text = gr.Textbox(label="input your question") with gr.Row(): with gr.Column(): clear_btn = gr.ClearButton( [*input_image, input_sketchpad, input_text]) with gr.Column(): submit_btn = gr.Button("Submit", variant="primary") with gr.Column(): output_md = gr.Markdown(label="answer", latex_delimiters=[{ "left": "\\(", "right": "\\)", "display": True }, { "left": "\\begin\{equation\}", "right": "\\end\{equation\}", "display": True }, { "left": "\\begin\{align\}", "right": "\\end\{align\}", "display": True }, { "left": "\\begin\{alignat\}", "right": "\\end\{alignat\}", "display": True }, { "left": "\\begin\{gather\}", "right": "\\end\{gather\}", "display": True }, { "left": "\\begin\{CD\}", "right": "\\end\{CD\}", "display": True }, { "left": "\\[", "right": "\\]", "display": True }], elem_id="qwen-md") submit_btn.click( fn=math_chat_bot, inputs=[*input_image, input_sketchpad, input_text, state], outputs=output_md) demo.launch()