File size: 3,265 Bytes
b6b32c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import gradio as gr 
import os 
from tqdm import tqdm

from unstructured.partition.pdf import partition_pdf
from langchain.schema.document import Document
import google.generativeai as genai
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
import shutil

from wasabi import msg

from PIL import Image

genai.configure(api_key = 'AIzaSyB342Fh-nkRaO38BshbyI4-s0T9orVpsMw')
model = genai.GenerativeModel('gemini-1.5-flash')

files = os.listdir('uploads')
files = [f'uploads/{file}' for file in files]

documents = []

for file in tqdm(files , total = len(files) , leave = False) : 

    elements = partition_pdf(
        filename = file , 
        extract_images_in_pdf = True , 
        infer_table_structure = True , 
        chunking_strategy = 'by_title' , 
        max_characters = 4000 , 
        new_after_n_chars = 3800 , 
        combine_text_under_n_chars = 2000 , 
        extract_image_block_output_dir = 'outputs'
    )

    for element in elements : 

        element = element.to_dict()

        metadata = element['metadata']

        if 'text_as_html' in metadata : documents.append(
            Document(
                page_content = metadata['text_as_html'] , 
                metadata = {
                    'type' : 'text' , 
                    'metadata' : element
                }
            )
        )         

        else : documents.append(
            Document(
                page_content = element['text'] , 
                metadata = {
                    'type' : 'text' , 
                    'metadata' : element
                }
            )
        )

    images = os.listdir('outputs')
    images = [f'outputs/{image}' for image in images]

    for image in tqdm(images , total = len(images) , leave = False) : 

        image = Image.open(image)

        try : 

            response = model.generate_content([
                image , 
                'Explain the Image'
            ])

            response = response.text

        except Exception as e : msg.fail(f'----| FAIL : COULDNT CALL THE IMAGE DESCRIPTION API : {e}') ; response = 'COuldnt Call Model for this'

        documents.append(
            Document(
                page_content = response , 
                metadata = {
                    'type' : 'image' , 
                    'metadata' : {
                        'image' : image
                    }
                }
            )
        )

    shutil.rmtree('uploads')

vc = FAISS.from_documents(
    documents = documents , 
    embedding = HuggingFaceEmbeddings(model_name = 'all-MiniLM-L6-v2')
)

def run_rag(query) : 

    similar_docs = vc.similarity_search(query , k = 4)
    context = [doc.page_content for doc in similar_docs]

    prompt = f'''
    You are a Helpfull Chatbot that helps users with their queries

    - You will be provided with a query
    - You will be provided with a context as well 

    Your task is to generate a response to the query based on the context provided

    Context : {context}

    Query : {query}

    '''

    response = model.generate_content(prompt)

    return response.text

demo = gr.Interface(
    fn = run_rag , 
    inputs = 'text' , 
    outputs = 'text'
)

demo.launch()