Spaces:
Running
Running
Upload train_model.py
Browse files- train_model.py +67 -0
train_model.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
+
from transformers import TrainingArguments, Trainer
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
+
|
7 |
+
# Load dataset
|
8 |
+
ds = load_dataset("knkarthick/dialogsum")
|
9 |
+
|
10 |
+
# Load tokenizer and model
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
|
12 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
|
13 |
+
|
14 |
+
# Preprocessing function
|
15 |
+
def preprocess_function(batch):
|
16 |
+
source = batch['dialogue']
|
17 |
+
target = batch['summary']
|
18 |
+
source_enc = tokenizer(source, padding='max_length', truncation=True, max_length=128)
|
19 |
+
target_enc = tokenizer(target, padding='max_length', truncation=True, max_length=128)
|
20 |
+
labels = target_enc['input_ids']
|
21 |
+
labels = [[(token if token != tokenizer.pad_token_id else -100) for token in label] for label in labels]
|
22 |
+
return {
|
23 |
+
'input_ids': source_enc['input_ids'],
|
24 |
+
'attention_mask': source_enc['attention_mask'],
|
25 |
+
'labels': labels
|
26 |
+
}
|
27 |
+
|
28 |
+
# Apply preprocessing
|
29 |
+
df_source = ds.map(preprocess_function, batched=True)
|
30 |
+
|
31 |
+
# Training arguments
|
32 |
+
training_args = TrainingArguments(
|
33 |
+
output_dir='/content/TextSummarizer_output',
|
34 |
+
per_device_train_batch_size=8,
|
35 |
+
num_train_epochs=2,
|
36 |
+
save_total_limit=1,
|
37 |
+
save_strategy="epoch",
|
38 |
+
remove_unused_columns=True,
|
39 |
+
logging_dir='/content/logs',
|
40 |
+
logging_steps=50,
|
41 |
+
)
|
42 |
+
|
43 |
+
# Trainer
|
44 |
+
trainer = Trainer(
|
45 |
+
model=model,
|
46 |
+
args=training_args,
|
47 |
+
train_dataset=df_source['train'],
|
48 |
+
eval_dataset=df_source['test'],
|
49 |
+
)
|
50 |
+
|
51 |
+
# Train
|
52 |
+
trainer.train()
|
53 |
+
|
54 |
+
# Evaluate
|
55 |
+
eval_results = trainer.evaluate()
|
56 |
+
print("Evaluation Results:", eval_results)
|
57 |
+
|
58 |
+
# ===> Save to Google Drive path
|
59 |
+
save_path = "/content/drive/MyDrive/TextSummarizer2/model_directory"
|
60 |
+
os.makedirs(save_path, exist_ok=True)
|
61 |
+
|
62 |
+
# Save model and tokenizer (use safe_serialization for large model.safetensors)
|
63 |
+
model.save_pretrained(save_path, safe_serialization=True)
|
64 |
+
tokenizer.save_pretrained(save_path)
|
65 |
+
|
66 |
+
print(f"✅ Model and tokenizer saved to: {save_path}")
|
67 |
+
print("📦 Files saved:", os.listdir(save_path))
|