Spaces:
Runtime error
Runtime error
Ayushdavidkushwahaaaa
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import whisper
|
4 |
+
import warnings
|
5 |
+
warnings.filterwarnings('ignore')
|
6 |
+
from transformers import pipeline
|
7 |
+
import os
|
8 |
+
|
9 |
+
MODEL_NAME = "openai/whisper-small"
|
10 |
+
BATCH_SIZE = 8
|
11 |
+
|
12 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
13 |
+
|
14 |
+
pipe = pipeline(
|
15 |
+
task="automatic-speech-recognition",
|
16 |
+
model=MODEL_NAME,
|
17 |
+
chunk_length_s=30,
|
18 |
+
device=device)
|
19 |
+
|
20 |
+
emotion_classifier = pipeline("text-classification",model='MilaNLProc/xlm-emo-t', return_all_scores=True)
|
21 |
+
|
22 |
+
def transcribe(microphone, file_upload, task):
|
23 |
+
output = ""
|
24 |
+
if (microphone is not None) and (file_upload is not None):
|
25 |
+
warn_output = (
|
26 |
+
"WARNING: You've uploaded an audio file and used the microphone. "
|
27 |
+
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
|
28 |
+
)
|
29 |
+
|
30 |
+
elif (microphone is None) and (file_upload is None):
|
31 |
+
raise gr.Error("You have to either use the microphone or upload an audio file")
|
32 |
+
|
33 |
+
file = microphone if microphone is not None else file_upload
|
34 |
+
|
35 |
+
text = pipe(file, batch_size=BATCH_SIZE, generate_kwargs={"task": task})["text"]
|
36 |
+
|
37 |
+
return output + text
|
38 |
+
|
39 |
+
def translate_and_classify(audio):
|
40 |
+
text_result = transcribe(audio, None, "transcribe")
|
41 |
+
emotion = emotion_classifier(text_result)
|
42 |
+
detected_emotion = {}
|
43 |
+
for emotion in emotion[0]:
|
44 |
+
detected_emotion[emotion["label"]] = emotion["score"]
|
45 |
+
return text_result, detected_emotion
|
46 |
+
|
47 |
+
with gr.Blocks() as demo:
|
48 |
+
|
49 |
+
gr.Markdown(
|
50 |
+
""" # Emotion Detection from Speech
|
51 |
+
|
52 |
+
##### Detection of anger, sadness, joy, fear in speech using OpenAI Whisper and XLM-RoBERTa
|
53 |
+
|
54 |
+
""")
|
55 |
+
|
56 |
+
with gr.Column():
|
57 |
+
with gr.Tab("Record Audio"):
|
58 |
+
# The 'source' argument is no longer supported, use 'sources' instead
|
59 |
+
audio_input_r = gr.Audio(label = 'Record Audio Input',sources=["microphone"],type="filepath")
|
60 |
+
transcribe_audio_r = gr.Button('Transcribe')
|
61 |
+
|
62 |
+
with gr.Tab("Upload Audio as File"):
|
63 |
+
# The 'source' argument is no longer supported, use 'sources' instead
|
64 |
+
audio_input_u = gr.Audio(label = 'Upload Audio',sources=["upload"],type="filepath")
|
65 |
+
transcribe_audio_u = gr.Button('Transcribe')
|
66 |
+
|
67 |
+
with gr.Row():
|
68 |
+
transcript_output = gr.Textbox(label="Transcription in the language of speech/audio", lines = 3)
|
69 |
+
emotion_output = gr.Label(label = "Detected Emotion")
|
70 |
+
|
71 |
+
transcribe_audio_r.click(translate_and_classify, inputs = audio_input_r, outputs = [transcript_output,emotion_output])
|
72 |
+
transcribe_audio_u.click(translate_and_classify, inputs = audio_input_u, outputs = [transcript_output,emotion_output])
|
73 |
+
|
74 |
+
demo.launch(share=True)
|