Spaces:
Sleeping
Sleeping
File size: 9,921 Bytes
fa3c234 08ef9f5 fa3c234 08ef9f5 fa3c234 08ef9f5 fa3c234 08ef9f5 fa3c234 8c092ed fa3c234 8c092ed fa3c234 f3f601e fa3c234 8c092ed fa3c234 08ef9f5 8c092ed 08ef9f5 8c092ed 08ef9f5 8c092ed 08ef9f5 8c092ed 08ef9f5 8c092ed 08ef9f5 8c092ed 08ef9f5 8c092ed 08ef9f5 8c092ed 08ef9f5 8c092ed 08ef9f5 8c092ed 08ef9f5 8c092ed 08ef9f5 8c092ed 08ef9f5 fa3c234 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error,mean_absolute_error,r2_score,mean_absolute_percentage_error
from matplotlib import pyplot as plt
import matplotlib.image as mpimg
import torch
load_reg_data = False
load_class_data = False
def conformal_Predict(cal_err,alpha = 0.8):
assert alpha != None, " Provide a value of alpha "
idx = int(alpha*len(cal_err))
return cal_err[idx]
if __name__ == '__main__':
st.set_page_config(layout="wide")
if not(load_reg_data):
x_test = np.load("./Reg_Test_X.npy")
y_test = np.load("./Reg_Test_y.npy")
err_calib = np.load("./Reg_calib_err.npy")
y_pred = np.load("./Reg_y_pred.npy")
california_img=plt.imread("./california.png")
load_reg_data = True
if not(load_class_data):
img = np.load("./final_images.npy")
pred = np.load("./final_pred.npy")
cls_calib = np.load("./cerr.npy")
load_class_data = True
st.title("Conformal Prediction")
intro_tab , reg_tab , class_tab = st.tabs(["Introduction","Regression", "Classification"])
css = '''
<style>
.stTabs [data-baseweb="tab-list"] button [data-testid="stMarkdownContainer"] p {
font-size:2rem;
}
</style>
'''
st.markdown(css, unsafe_allow_html=True)
with intro_tab:
st.write("", "", "")
f = open("Introduction.md",'r')
st.markdown(f.read())
st.write("---")
with reg_tab:
with st.container():
left,right = st.columns([3,2])
with left:
st.write(" ")
st.markdown("For Regression, we are using California Housing Dataset. It serves as an excellent introduction to implementing machine learning algorithms because it has an easily understandable list of variables and sits at an optimal size between being too toyish and too cumbersome. The dataset pertains to the houses found in a given California district and some summary stats about them based on the 1990 census data.")
st.write("---")
st.markdown("Lets assume you are a buyer in California who is intrested in buying a house. You will most likely have a budget in mind. We have trained a Random forest regressor on the california dataset that predicts the price of a property. This model will help you determine where you will be able to buy a house in california given your budget estimates")
budget = st.slider('Your Budget (in Millions)',min_value=0.3,max_value=5.0,value=2.0,step=0.05)
st.markdown("Now, Please select how certain you want the model to be. More the value of alpha, more certain the model will be and hence more accurate will the reading be for the price estimate")
alpha = st.slider(' Select a value of alpha',min_value=0.1,max_value=.99,value=0.5,step=0.05)
st.markdown("The green points indicate that your budget it greater than the upper bound of model's prediction and hence these properties could be bought. Red points however, are the are the areas where you wont be able to buy a house")
with right:
sigma = conformal_Predict(err_calib,1-alpha)
in_range = (y_pred+sigma)<budget
fig1, ax1 = plt.figure(figsize=(10,7),dpi=150), plt.gca()
ax1.imshow(california_img, alpha=0.6,cmap=plt.get_cmap("jet"),extent=[-124.55, -113.80, 32.45, 42.05],zorder=1)
ax1.scatter(x_test[in_range,7],x_test[in_range,6],s=10,alpha=0.5,label='Can be Bought',c='C2',zorder=3)
ax1.scatter(x_test[~in_range,7],x_test[~in_range,6],s=10,alpha=0.5,label='Cannot Buy',c='r',zorder=3)
ax1.set_title("California Housing Locations (Test-set)")
ax1.set_xlabel("Latitude")
ax1.set_ylabel("Longitude")
ax1.spines['top'].set_visible(False)
ax1.spines['bottom'].set_visible(False)
ax1.spines['right'].set_visible(False)
ax1.spines['left'].set_visible(False)
ax1.set_xticks([])
ax1.set_yticks([])
ax1.legend()
ax1.patch.set_alpha(0.0)
st.pyplot(fig1)
st.write("---")
with class_tab:
st.write("", "", "")
st.write("For Classification we are using Fashion-MNIST dataset. Fashion-MNIST is a dataset of Zalando's article images. Zalando intends Fashion-MNIST to serve as a direct drop-in for benchmarking machine learning algorithms. Each example is assigned to one of the following labels: 0 T-shirt/top, 1 Trouser,2 Pullover, 3 Dress, 4 Coat, 5 Sandal, 6 Shirt, 7 Sneaker, 8 Bag, 9 Ankle boot")
st.write("Lets assume you have a model trained for Object detection but you cant just rely on the softmax output for that model. This is where conformal prediction comes into play. We can use the alpha value to pick up a threshold. When softmax scores go beyond this threshold score then onlt that label is considered as the predicted class.")
st.write("The higher the value of alpha more the model is certain about its prediction")
c1,c2,c3 = st.columns(3)
with c2:
alpha1 = st.slider('Select a value of alpha for the Model',min_value=0.1,max_value=.99,value=0.5,step=0.05)
sigma = conformal_Predict(cls_calib,alpha1)
labels = np.array(['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'])
with st.container():
c1,col1, col2, col3,c2 = st.columns([0.3,0.3,0.3,0.3,0.3])
with col1:
fig1, ax1 = plt.figure(), plt.gca()
ax1.imshow(torch.tensor(img[0]).permute(1,2,0),cmap='gray')
ax1.spines['top'].set_visible(False)
ax1.spines['bottom'].set_visible(False)
ax1.spines['right'].set_visible(False)
ax1.spines['left'].set_visible(False)
ax1.set_xticks([])
ax1.set_yticks([])
st.pyplot(fig1)
out_pred = pred[0]>sigma
c = ['C2' if pred==1 else 'C0' for pred in out_pred]
fig1, ax1 = plt.figure(), plt.gca()
ax1.bar(range(10),pred[0],color=c)
ax1.axhline(y=sigma,linestyle='dashed',c='r')
ax1.set_xlabel("Classe Labels")
ax1.set_ylabel("SoftMax Probabilities")
ax1.set_title("Class Scores with Threshold")
ax1.set_xticks([i for i in range(10)])
st.pyplot(fig1)
out_labels = labels[out_pred]
if len(out_labels)==0:
out_labels = ["None"]
out_labels = ",".join(out_labels)
st.write("Ouput Labels : "+out_labels)
st.write("True Label : Coat")
with col2:
fig1, ax1 = plt.figure(), plt.gca()
ax1.imshow(torch.tensor(img[1]).permute(1,2,0),cmap='gray')
ax1.spines['top'].set_visible(False)
ax1.spines['bottom'].set_visible(False)
ax1.spines['right'].set_visible(False)
ax1.spines['left'].set_visible(False)
ax1.set_xticks([])
ax1.set_yticks([])
st.pyplot(fig1)
out_pred = pred[1]>sigma
c = ['C2' if pred==1 else 'C0' for pred in out_pred]
fig1, ax1 = plt.figure(), plt.gca()
ax1.bar(range(10),pred[1],color = c)
ax1.axhline(y=sigma,linestyle='dashed',c='r')
ax1.set_xlabel("Classe Labels")
ax1.set_ylabel("SoftMax Probabilities")
ax1.set_title("Class Scores with Threshold")
ax1.set_xticks([i for i in range(10)])
st.pyplot(fig1)
out_labels = labels[out_pred]
if len(out_labels)==0:
out_labels = ["None"]
out_labels = ",".join(out_labels)
st.write("Ouput Labels : "+out_labels)
st.write("True Label : Ankle Boot")
with col3:
fig1, ax1 = plt.figure(), plt.gca()
ax1.imshow(torch.tensor(img[2]).permute(1,2,0),cmap='gray')
ax1.spines['top'].set_visible(False)
ax1.spines['bottom'].set_visible(False)
ax1.spines['right'].set_visible(False)
ax1.spines['left'].set_visible(False)
ax1.set_xticks([])
ax1.set_yticks([])
st.pyplot(fig1)
out_pred = pred[2]>sigma
c = ['C2' if pred==1 else 'C0' for pred in out_pred]
fig1, ax1 = plt.figure(), plt.gca()
ax1.bar(range(10),pred[2],color=c)
ax1.axhline(y=sigma,linestyle='dashed',c='r')
ax1.set_xlabel("Classe Labels")
ax1.set_ylabel("SoftMax Probabilities")
ax1.set_title("Class Scores with Threshold")
ax1.set_xticks([i for i in range(10)])
st.pyplot(fig1)
out_labels = labels[out_pred]
if len(out_labels)==0:
out_labels = ["None"]
out_labels = ",".join(out_labels)
st.write("Ouput Labels : "+out_labels)
st.write("True Label : Bag")
st.write("---")
|