File size: 9,921 Bytes
fa3c234
 
 
 
 
 
 
 
 
 
08ef9f5
 
fa3c234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08ef9f5
fa3c234
 
 
 
08ef9f5
 
 
 
fa3c234
08ef9f5
fa3c234
 
 
 
 
 
 
 
 
 
 
 
 
 
8c092ed
fa3c234
 
 
8c092ed
fa3c234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3f601e
fa3c234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c092ed
fa3c234
 
08ef9f5
8c092ed
 
 
08ef9f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c092ed
08ef9f5
 
 
 
 
 
 
 
 
 
 
 
8c092ed
 
 
08ef9f5
8c092ed
08ef9f5
 
 
 
 
 
 
8c092ed
 
08ef9f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c092ed
 
 
08ef9f5
8c092ed
08ef9f5
 
 
 
 
 
 
8c092ed
08ef9f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c092ed
 
 
08ef9f5
8c092ed
08ef9f5
 
 
 
 
 
 
8c092ed
08ef9f5
 
 
 
 
8c092ed
 
08ef9f5
 
fa3c234
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error,mean_absolute_error,r2_score,mean_absolute_percentage_error
from matplotlib import pyplot as plt
import matplotlib.image as mpimg
import torch


load_reg_data = False
load_class_data = False



def conformal_Predict(cal_err,alpha = 0.8):
    assert alpha != None, " Provide a value of alpha "
    idx = int(alpha*len(cal_err))
    return cal_err[idx]
    


if __name__ == '__main__':

    st.set_page_config(layout="wide")

    if not(load_reg_data):
        x_test = np.load("./Reg_Test_X.npy")
        y_test = np.load("./Reg_Test_y.npy")
        err_calib = np.load("./Reg_calib_err.npy")
        y_pred = np.load("./Reg_y_pred.npy")
        california_img=plt.imread("./california.png")
        load_reg_data = True


    if not(load_class_data):
        img = np.load("./final_images.npy")
        pred = np.load("./final_pred.npy")
        cls_calib = np.load("./cerr.npy")
        load_class_data = True

    

    st.title("Conformal Prediction")
    intro_tab , reg_tab , class_tab = st.tabs(["Introduction","Regression", "Classification"])
    css = '''
        <style>
            .stTabs [data-baseweb="tab-list"] button [data-testid="stMarkdownContainer"] p {
            font-size:2rem;
            }
        </style>
        '''

    st.markdown(css, unsafe_allow_html=True)

    with intro_tab:
        st.write("", "", "")
        f = open("Introduction.md",'r')
        st.markdown(f.read())

        st.write("---")

    with reg_tab:
        with st.container():

            left,right = st.columns([3,2])

            with left:

                st.write(" ")

                st.markdown("For Regression, we are using California Housing Dataset. It serves as an excellent introduction to implementing machine learning algorithms because it has an easily understandable list of variables and sits at an optimal size between being too toyish and too cumbersome. The dataset pertains to the houses found in a given California district and some summary stats about them based on the 1990 census data.")

                st.write("---")

                st.markdown("Lets assume you are a buyer in California who is intrested in buying a house. You will most likely have a budget in mind. We have trained a Random forest regressor on the california dataset that predicts the price of a property. This model will help you determine where you will be able to buy a house in california given your budget estimates")

                budget = st.slider('Your Budget (in Millions)',min_value=0.3,max_value=5.0,value=2.0,step=0.05)

                st.markdown("Now, Please select how certain you want the model to be. More the value of alpha, more certain the model will be and hence more accurate will the reading be for the price estimate")

                alpha = st.slider(' Select a value of alpha',min_value=0.1,max_value=.99,value=0.5,step=0.05)

                st.markdown("The green points indicate that your budget it greater than the upper bound of model's prediction and hence these properties could be bought. Red points however, are the are the areas where you wont be able to buy a house")

            with right:

                sigma = conformal_Predict(err_calib,1-alpha)
                in_range = (y_pred+sigma)<budget

                fig1, ax1 = plt.figure(figsize=(10,7),dpi=150), plt.gca()
                ax1.imshow(california_img, alpha=0.6,cmap=plt.get_cmap("jet"),extent=[-124.55, -113.80, 32.45, 42.05],zorder=1)
                ax1.scatter(x_test[in_range,7],x_test[in_range,6],s=10,alpha=0.5,label='Can be Bought',c='C2',zorder=3)
                ax1.scatter(x_test[~in_range,7],x_test[~in_range,6],s=10,alpha=0.5,label='Cannot Buy',c='r',zorder=3)

                
                
                ax1.set_title("California Housing Locations (Test-set)")
                ax1.set_xlabel("Latitude")
                ax1.set_ylabel("Longitude")
                ax1.spines['top'].set_visible(False)
                ax1.spines['bottom'].set_visible(False)
                ax1.spines['right'].set_visible(False)
                ax1.spines['left'].set_visible(False)
                ax1.set_xticks([])
                ax1.set_yticks([])
                ax1.legend()
                ax1.patch.set_alpha(0.0)
                st.pyplot(fig1)

        st.write("---")

    with class_tab:

        st.write("", "", "")
        
        st.write("For Classification we are using Fashion-MNIST dataset. Fashion-MNIST is a dataset of Zalando's article images. Zalando intends Fashion-MNIST to serve as a direct drop-in for benchmarking machine learning algorithms. Each example is assigned to one of the following labels: 0 T-shirt/top, 1 Trouser,2 Pullover, 3 Dress, 4 Coat, 5 Sandal, 6 Shirt, 7 Sneaker, 8 Bag, 9 Ankle boot")

        st.write("Lets assume you have a model trained for Object detection but you cant just rely on the softmax output for that model. This is where conformal prediction comes into play. We can use the alpha value to pick up a threshold. When softmax scores go beyond this threshold score then onlt that label is considered as the predicted class.") 

        st.write("The higher the value of alpha more the model is certain about its prediction")



        c1,c2,c3 = st.columns(3)
        with c2:
            alpha1 = st.slider('Select a value of alpha for the Model',min_value=0.1,max_value=.99,value=0.5,step=0.05)
        sigma = conformal_Predict(cls_calib,alpha1)

        labels = np.array(['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'])   

        with st.container():
            
            c1,col1, col2, col3,c2 = st.columns([0.3,0.3,0.3,0.3,0.3])

            with col1:
                fig1, ax1 = plt.figure(), plt.gca()
                ax1.imshow(torch.tensor(img[0]).permute(1,2,0),cmap='gray')
                ax1.spines['top'].set_visible(False)
                ax1.spines['bottom'].set_visible(False)
                ax1.spines['right'].set_visible(False)
                ax1.spines['left'].set_visible(False)
                ax1.set_xticks([])
                ax1.set_yticks([])
                st.pyplot(fig1)

                out_pred = pred[0]>sigma
                c = ['C2' if pred==1 else 'C0' for pred in out_pred]

                fig1, ax1 = plt.figure(), plt.gca()
                ax1.bar(range(10),pred[0],color=c)
                ax1.axhline(y=sigma,linestyle='dashed',c='r')
                ax1.set_xlabel("Classe Labels")
                ax1.set_ylabel("SoftMax Probabilities")
                ax1.set_title("Class Scores with Threshold")
                ax1.set_xticks([i for i in range(10)])
                st.pyplot(fig1)

                out_labels = labels[out_pred]
                
                if len(out_labels)==0:
                    out_labels = ["None"]
                out_labels = ",".join(out_labels)
                st.write("Ouput Labels : "+out_labels)
                st.write("True Label : Coat")

            
            with col2:
                fig1, ax1 = plt.figure(), plt.gca()
                ax1.imshow(torch.tensor(img[1]).permute(1,2,0),cmap='gray')
                ax1.spines['top'].set_visible(False)
                ax1.spines['bottom'].set_visible(False)
                ax1.spines['right'].set_visible(False)
                ax1.spines['left'].set_visible(False)
                ax1.set_xticks([])
                ax1.set_yticks([])
                st.pyplot(fig1)

                out_pred = pred[1]>sigma
                c = ['C2' if pred==1 else 'C0' for pred in out_pred]

                fig1, ax1 = plt.figure(), plt.gca()
                ax1.bar(range(10),pred[1],color = c)
                ax1.axhline(y=sigma,linestyle='dashed',c='r')
                ax1.set_xlabel("Classe Labels")
                ax1.set_ylabel("SoftMax Probabilities")
                ax1.set_title("Class Scores with Threshold")
                ax1.set_xticks([i for i in range(10)])
                st.pyplot(fig1)

                out_labels = labels[out_pred]
                if len(out_labels)==0:
                    out_labels = ["None"]
                out_labels = ",".join(out_labels)
                st.write("Ouput Labels : "+out_labels)
                st.write("True Label : Ankle Boot")

            with col3:
                fig1, ax1 = plt.figure(), plt.gca()
                ax1.imshow(torch.tensor(img[2]).permute(1,2,0),cmap='gray')
                ax1.spines['top'].set_visible(False)
                ax1.spines['bottom'].set_visible(False)
                ax1.spines['right'].set_visible(False)
                ax1.spines['left'].set_visible(False)
                ax1.set_xticks([])
                ax1.set_yticks([])
                st.pyplot(fig1)

                out_pred = pred[2]>sigma
                c = ['C2' if pred==1 else 'C0' for pred in out_pred]

                fig1, ax1 = plt.figure(), plt.gca()
                ax1.bar(range(10),pred[2],color=c)
                ax1.axhline(y=sigma,linestyle='dashed',c='r')
                ax1.set_xlabel("Classe Labels")
                ax1.set_ylabel("SoftMax Probabilities")
                ax1.set_title("Class Scores with Threshold")
                ax1.set_xticks([i for i in range(10)])
                st.pyplot(fig1)

                out_labels = labels[out_pred]
                if len(out_labels)==0:
                    out_labels = ["None"]
                out_labels = ",".join(out_labels)
                st.write("Ouput Labels : "+out_labels)
                st.write("True Label : Bag")
    
        st.write("---")