Spaces:
Sleeping
Sleeping
Ayush Shrivastava
commited on
Commit
·
0733338
1
Parent(s):
ab8a7de
Adding Model.Arch to app.py
Browse files
app.py
CHANGED
|
@@ -8,6 +8,7 @@ from keras.models import Sequential
|
|
| 8 |
import matplotlib.pyplot as plt
|
| 9 |
from keras.layers import Dense
|
| 10 |
import streamlit as st
|
|
|
|
| 11 |
|
| 12 |
|
| 13 |
|
|
@@ -43,7 +44,17 @@ def model_MLP(X_train,y_train,X_test,layers, nodes, activation, solver, rate, it
|
|
| 43 |
y_hat = model.predict(X_test)
|
| 44 |
|
| 45 |
# Return model.
|
| 46 |
-
return y_hat
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
|
| 49 |
if __name__ == '__main__':
|
|
@@ -85,6 +96,14 @@ if __name__ == '__main__':
|
|
| 85 |
# Split data into training and test sets.
|
| 86 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=split,random_state=42)
|
| 87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
# Plotting the Prediction data.
|
| 89 |
# creating a container to display the graphs.
|
| 90 |
with st.container():
|
|
@@ -117,9 +136,6 @@ if __name__ == '__main__':
|
|
| 117 |
# Plotting the test data.
|
| 118 |
st.write('Test Data set')
|
| 119 |
|
| 120 |
-
# Predicting the test data.
|
| 121 |
-
y_hat = model_MLP(X_train,y_train,X_test,layers, nodes, activation, solver, rate, iter)
|
| 122 |
-
|
| 123 |
fig2, ax2 = plt.subplots(1)
|
| 124 |
ax2.scatter(X_test, y_test, label='test',color='blue',alpha=0.4)
|
| 125 |
ax2.scatter(X_test, y_hat, label='prediction',c='red',alpha=0.6,edgecolors='black')
|
|
@@ -133,6 +149,7 @@ if __name__ == '__main__':
|
|
| 133 |
# write the graph to the app.
|
| 134 |
st.pyplot(fig2)
|
| 135 |
|
|
|
|
| 136 |
# Printing the Errors.
|
| 137 |
st.subheader('Errors')
|
| 138 |
|
|
|
|
| 8 |
import matplotlib.pyplot as plt
|
| 9 |
from keras.layers import Dense
|
| 10 |
import streamlit as st
|
| 11 |
+
import io
|
| 12 |
|
| 13 |
|
| 14 |
|
|
|
|
| 44 |
y_hat = model.predict(X_test)
|
| 45 |
|
| 46 |
# Return model.
|
| 47 |
+
return y_hat, model
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def get_model_summary(model):
|
| 52 |
+
stream = io.StringIO()
|
| 53 |
+
model.summary(print_fn=lambda x: stream.write(x + '\n'))
|
| 54 |
+
summary_string = stream.getvalue()
|
| 55 |
+
stream.close()
|
| 56 |
+
return summary_string
|
| 57 |
+
|
| 58 |
|
| 59 |
|
| 60 |
if __name__ == '__main__':
|
|
|
|
| 96 |
# Split data into training and test sets.
|
| 97 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=split,random_state=42)
|
| 98 |
|
| 99 |
+
# Predicting the test data.
|
| 100 |
+
y_hat,model = model_MLP(X_train,y_train,X_test,layers, nodes, activation, solver, rate, iter)
|
| 101 |
+
|
| 102 |
+
# Printing Model Architecture.
|
| 103 |
+
st.subheader('Model Architecture')
|
| 104 |
+
# summary = get_model_summary(model)
|
| 105 |
+
st.write(model.summary(print_fn=lambda x: st.text(x)))
|
| 106 |
+
|
| 107 |
# Plotting the Prediction data.
|
| 108 |
# creating a container to display the graphs.
|
| 109 |
with st.container():
|
|
|
|
| 136 |
# Plotting the test data.
|
| 137 |
st.write('Test Data set')
|
| 138 |
|
|
|
|
|
|
|
|
|
|
| 139 |
fig2, ax2 = plt.subplots(1)
|
| 140 |
ax2.scatter(X_test, y_test, label='test',color='blue',alpha=0.4)
|
| 141 |
ax2.scatter(X_test, y_hat, label='prediction',c='red',alpha=0.6,edgecolors='black')
|
|
|
|
| 149 |
# write the graph to the app.
|
| 150 |
st.pyplot(fig2)
|
| 151 |
|
| 152 |
+
|
| 153 |
# Printing the Errors.
|
| 154 |
st.subheader('Errors')
|
| 155 |
|