# import libraries. from sklearn.model_selection import train_test_split from sklearn.datasets import make_regression from sklearn.metrics import mean_squared_error,mean_absolute_error from keras.optimizers import SGD,Adam from keras.models import Sequential import matplotlib.pyplot as plt from keras.layers import Dense import streamlit as st import numpy as np import io # set random seed np.random.seed(42) def model_MLP(X_train,y_train,X_test,layers, nodes, activation, solver, rate, iter): """Creates a MLP model and return the predictions""" # Define model. model = Sequential() # Adding first layers. model.add(Dense(nodes, activation=activation, input_dim=1)) # Adding remaining hidden layers. for i in range(layers-1): model.add(Dense(nodes, activation=activation)) # Adding output layer. model.add(Dense(1, activation='linear')) # Choose optimizer. if solver == 'adam': opt = Adam(learning_rate=rate) else: opt = SGD(learning_rate=rate) # Compile model. model.compile(optimizer=opt,loss = 'mean_squared_error',metrics=['mean_squared_error']) # Fit model. model.fit(X_train, y_train, epochs=iter, verbose=0) # Evaluate model. y_hat = model.predict(X_test) # Return model. return y_hat, model def get_model_summary(model): stream = io.StringIO() model.summary(print_fn=lambda x: stream.write(x + '\n')) summary_string = stream.getvalue() stream.close() return summary_string if __name__ == '__main__': # Adding a title to the app. st.title("Visualize MLPs") # Adding a subtitle to the app. st.subheader('MLP Parameters') # Adding two columns to display the sliders for the parameters. left_column, right_column = st.columns(2) with left_column: # slider for max iterations. iter = st.slider('Max Iteration', min_value=100,max_value= 1000,value=500,step=10) # slider for nodes per layer. nodes = st.slider('Nodes', min_value=1,max_value= 10,value=5,step=1) # slider for number of hidden layers. layers = st.slider('Hidden Layers', min_value=1,max_value= 10,value=3,step=1) # selectbox for activation function. activation = st.selectbox('Activation (Output layer will always be linear)',('linear','relu','sigmoid','tanh'),index=2) with right_column: # slider for adding noise. noise = st.slider('Noise', min_value=0,max_value= 100,value=20,step=10) # slider for test-train split. split = st.slider('Test-Train Split', min_value=0.1,max_value= 0.9,value=0.3,step=0.1) # selectbox for solver/optimizer. solver = st.selectbox('Solver',('adam','sgd'),index=0) # selectbox for learning rate. rate = float(st.selectbox('Learning Rate',('0.001','0.003','0.01','0.03','0.1','0.3','1.0'),index=3)) # Generating regression data. X=np.linspace(0,50,250) y = X + np.sin(X)*X/5*noise/50*np.random.choice([0,0.5,1,1.5]) + np.random.normal(0,2,250)*noise/100 # Split data into training and test sets. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=split,random_state=42) # Predicting the test data. y_hat,model = model_MLP(X_train,y_train,X_test,layers, nodes, activation, solver, rate, iter) # Printing Model Architecture. st.subheader('Model Architecture') st.write(model.summary(print_fn=lambda x: st.text(x))) # Plotting the Prediction data. # creating a container to display the graphs. with st.container(): # Adding a subheader to the container. st.subheader('Predictions') # Adding two columns to display the graphs. left_graph, right_graph = st.columns(2) with left_graph: # Plotting the training data. st.write('Training Data set') fig1, ax1 = plt.subplots(1) ax1.scatter(X_train, y_train, label='train',color='blue',alpha=0.6,edgecolors='black') # setting the labels and title of the graph. ax1.set_xlabel('X') ax1.set_ylabel('y') ax1.set_title('Training Data set') ax1.legend() # write the graph to the app. st.pyplot(fig1) plt.savefig('plot_1.jpg') with right_graph: # Plotting the test data. st.write('Test Data set') fig2, ax2 = plt.subplots(1) ax2.scatter(X_test, y_test, label='test',color='blue',alpha=0.6,edgecolors='black') test = np.c_[(X_test,y_hat)] test = test[test[:,0].argsort()] ax2.plot(test[:,0],test[:,1], label='prediction',c='red',alpha=0.6,linewidth=2,marker='x') # setting the labels and title of the graph. ax2.set_xlabel('X') ax2.set_ylabel('y') ax2.set_title('Test Data set') ax2.legend() # write the graph to the app. st.pyplot(fig2) plt.savefig('plot_2.jpg') # Printing the Errors. st.subheader('Errors') # Calculating the MSE. mse = mean_squared_error(y_test, y_hat, squared=False) st.write('Root Mean Squared Error : ',mse) # Calculating the MAE. mae = mean_absolute_error(y_test, y_hat) st.write('Mean Absolute Error : ',mae)