Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,22 +6,16 @@ import torch
|
|
6 |
|
7 |
print(torch.__version__)
|
8 |
|
9 |
-
# install packages for mamba
|
10 |
-
def install_mamba():
|
11 |
-
subprocess.run(shlex.split("pip install https://github.com/Dao-AILab/causal-conv1d/releases/download/v1.4.0/causal_conv1d-1.4.0+cu122torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"))
|
12 |
-
subprocess.run(shlex.split("pip install https://github.com/state-spaces/mamba/releases/download/v2.2.2/mamba_ssm-2.2.2+cu122torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"))
|
13 |
-
|
14 |
-
install_mamba()
|
15 |
-
|
16 |
import torch
|
17 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
18 |
import gradio as gr
|
19 |
from threading import Thread
|
20 |
|
21 |
-
|
|
|
22 |
|
23 |
-
TITLE = "<h1><center>
|
24 |
-
SUB_TITLE = """<center>
|
25 |
|
26 |
CSS = """
|
27 |
.duplicate-button {
|
@@ -40,19 +34,21 @@ END_MESSAGE = """
|
|
40 |
**The conversation has reached to its end, please press "Clear" to restart a new conversation**
|
41 |
"""
|
42 |
|
43 |
-
device = "
|
44 |
|
45 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
48 |
torch_dtype=torch.bfloat16,
|
49 |
).to(device)
|
50 |
|
51 |
if device == "cuda":
|
52 |
model = torch.compile(model)
|
53 |
|
54 |
-
|
55 |
-
|
56 |
@spaces.GPU
|
57 |
def stream_chat(
|
58 |
message: str,
|
@@ -62,6 +58,7 @@ def stream_chat(
|
|
62 |
top_p: float = 1.0,
|
63 |
top_k: int = 20,
|
64 |
penalty: float = 1.2,
|
|
|
65 |
):
|
66 |
print(f'message: {message}')
|
67 |
print(f'history: {history}')
|
@@ -73,37 +70,59 @@ def stream_chat(
|
|
73 |
{"role": "assistant", "content": answer},
|
74 |
])
|
75 |
|
76 |
-
|
77 |
conversation.append({"role": "user", "content": message})
|
78 |
|
79 |
-
|
80 |
-
input_text = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt = True)
|
81 |
-
|
82 |
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
83 |
-
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
chatbot = gr.Chatbot(height=600)
|
109 |
|
@@ -157,6 +176,14 @@ with gr.Blocks(css=CSS, theme="soft") as demo:
|
|
157 |
label="Repetition penalty",
|
158 |
render=False,
|
159 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
],
|
161 |
examples=[
|
162 |
["Hello there, can you suggest few places to visit in UAE?"],
|
|
|
6 |
|
7 |
print(torch.__version__)
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
import torch
|
10 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
11 |
import gradio as gr
|
12 |
from threading import Thread
|
13 |
|
14 |
+
MODEL_BIG = "HuggingFaceTB/SmolLM-1.7B-Instruct"
|
15 |
+
MODEL_SMALL = "HuggingFaceTB/SmolLM-360M-Instruct"
|
16 |
|
17 |
+
TITLE = "<h1><center>Auto-Guidance Playground</center></h1>"
|
18 |
+
SUB_TITLE = """<center>Auto-guidance was a technique made by NVIDIA for text-conditioned image models. This is a test of the concept with SmolLM.</center>"""
|
19 |
|
20 |
CSS = """
|
21 |
.duplicate-button {
|
|
|
34 |
**The conversation has reached to its end, please press "Clear" to restart a new conversation**
|
35 |
"""
|
36 |
|
37 |
+
device = "cpu" # for GPU usage or "cpu" for CPU usage
|
38 |
|
39 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
40 |
+
model_big = AutoModelForCausalLM.from_pretrained(
|
41 |
+
MODEL_BIG,
|
42 |
+
torch_dtype=torch.bfloat16,
|
43 |
+
).to(device)
|
44 |
+
model_small = AutoModelForCausalLM.from_pretrained(
|
45 |
+
MODEL_SMALL,
|
46 |
torch_dtype=torch.bfloat16,
|
47 |
).to(device)
|
48 |
|
49 |
if device == "cuda":
|
50 |
model = torch.compile(model)
|
51 |
|
|
|
|
|
52 |
@spaces.GPU
|
53 |
def stream_chat(
|
54 |
message: str,
|
|
|
58 |
top_p: float = 1.0,
|
59 |
top_k: int = 20,
|
60 |
penalty: float = 1.2,
|
61 |
+
guidance_scale: float = 1.5,
|
62 |
):
|
63 |
print(f'message: {message}')
|
64 |
print(f'history: {history}')
|
|
|
70 |
{"role": "assistant", "content": answer},
|
71 |
])
|
72 |
|
|
|
73 |
conversation.append({"role": "user", "content": message})
|
74 |
|
75 |
+
input_text = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
|
|
|
|
76 |
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
|
|
77 |
|
78 |
+
generated_tokens = []
|
79 |
+
current_input = inputs
|
80 |
+
|
81 |
+
for _ in range(max_new_tokens):
|
82 |
+
with torch.no_grad():
|
83 |
+
logits_small = model_small(current_input).logits[:, -1, :]
|
84 |
+
logits_big = model_big(current_input).logits[:, -1, :]
|
85 |
+
|
86 |
+
probs_small = torch.softmax(logits_small / temperature, dim=-1)
|
87 |
+
probs_big = torch.softmax(logits_big / temperature, dim=-1)
|
88 |
+
|
89 |
+
interpolated_logits = logits_big + (guidance_scale - 1) * (logits_big - logits_small) * probs_small
|
90 |
+
|
91 |
+
if top_p < 1.0:
|
92 |
+
interpolated_logits = top_p_filtering(interpolated_logits, top_p=top_p)
|
93 |
+
if top_k > 0:
|
94 |
+
interpolated_logits = top_k_filtering(interpolated_logits, top_k=top_k)
|
95 |
+
|
96 |
+
next_token = torch.multinomial(torch.softmax(interpolated_logits, dim=-1), num_samples=1)
|
97 |
+
|
98 |
+
if next_token.item() == tokenizer.eos_token_id:
|
99 |
+
break
|
100 |
+
|
101 |
+
generated_tokens.append(next_token.item())
|
102 |
+
current_input = torch.cat([current_input, next_token], dim=1)
|
103 |
+
|
104 |
+
partial_output = tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
105 |
+
yield partial_output
|
106 |
+
|
107 |
+
print(f'response: {partial_output}')
|
108 |
+
|
109 |
+
def top_k_filtering(logits, top_k=0, filter_value=-float('Inf')):
|
110 |
+
top_k = min(top_k, logits.size(-1))
|
111 |
+
if top_k > 0:
|
112 |
+
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
113 |
+
logits[indices_to_remove] = filter_value
|
114 |
+
return logits
|
115 |
+
|
116 |
+
def top_p_filtering(logits, top_p=0.0, filter_value=-float('Inf')):
|
117 |
+
if top_p > 0.0:
|
118 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
119 |
+
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
120 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
121 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
122 |
+
sorted_indices_to_remove[..., 0] = 0
|
123 |
+
indices_to_remove = sorted_indices[sorted_indices_to_remove]
|
124 |
+
logits[indices_to_remove] = filter_value
|
125 |
+
return logits
|
126 |
|
127 |
chatbot = gr.Chatbot(height=600)
|
128 |
|
|
|
176 |
label="Repetition penalty",
|
177 |
render=False,
|
178 |
),
|
179 |
+
gr.Slider(
|
180 |
+
minimum=0.0,
|
181 |
+
maximum=10.0,
|
182 |
+
step=0.1,
|
183 |
+
value=1.5,
|
184 |
+
label="Auto-Guidance Scale",
|
185 |
+
render=False,
|
186 |
+
),
|
187 |
],
|
188 |
examples=[
|
189 |
["Hello there, can you suggest few places to visit in UAE?"],
|