File size: 8,825 Bytes
a81203e f178b16 a81203e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import paddle
import numpy as np
import random
from paddlenlp.transformers import SkepTokenizer, SkepModel
import gradio as gr
from seqeval.metrics.sequence_labeling import get_entities
label_ext_path = "./data/data121190/label_ext.dict"
label_cls_path = "./data/data121242/label_cls.dict"
ext_model_path = "./best_ext.pdparams"
cls_model_path = "./best_cls.pdparams"
def set_seed(seed):
paddle.seed(seed)
random.seed(seed)
np.random.seed(seed)
def format_print(results):
for result in results:
aspect, opinion = result[0], set(result[1:])
print(f"aspect: {aspect}, opinion: {opinion}\n")
def decoding(text, tag_seq):
assert len(text) == len(tag_seq), f"text len: {len(text)}, tag_seq len: {len(tag_seq)}"
puncs = list(",.?;!,。?;!")
splits = [idx for idx in range(len(text)) if text[idx] in puncs]
prev = 0
sub_texts, sub_tag_seqs = [], []
for i, split in enumerate(splits):
sub_tag_seqs.append(tag_seq[prev:split])
sub_texts.append(text[prev:split])
prev = split
sub_tag_seqs.append(tag_seq[prev:])
sub_texts.append((text[prev:]))
ents_list = []
for sub_text, sub_tag_seq in zip(sub_texts, sub_tag_seqs):
ents = get_entities(sub_tag_seq, suffix=False)
ents_list.append((sub_text, ents))
aps = []
no_a_words = []
for sub_tag_seq, ent_list in ents_list:
sub_aps = []
sub_no_a_words = []
# print(ent_list)
for ent in ent_list:
ent_name, start, end = ent
if ent_name == "Aspect":
aspect = sub_tag_seq[start:end+1]
sub_aps.append([aspect])
if len(sub_no_a_words) > 0:
sub_aps[-1].extend(sub_no_a_words)
sub_no_a_words.clear()
else:
ent_name == "Opinion"
opinion = sub_tag_seq[start:end + 1]
if len(sub_aps) > 0:
sub_aps[-1].append(opinion)
else:
sub_no_a_words.append(opinion)
if sub_aps:
aps.extend(sub_aps)
if len(no_a_words) > 0:
aps[-1].extend(no_a_words)
no_a_words.clear()
elif sub_no_a_words:
if len(aps) > 0:
aps[-1].extend(sub_no_a_words)
else:
no_a_words.extend(sub_no_a_words)
if no_a_words:
no_a_words.insert(0, "None")
aps.append(no_a_words)
return aps
def is_aspect_first(text, aspect, opinion_word):
return text.find(aspect) <= text.find(opinion_word)
def concate_aspect_and_opinion(text, aspect, opinion_words):
aspect_text = ""
for opinion_word in opinion_words:
if is_aspect_first(text, aspect, opinion_word):
aspect_text += aspect+opinion_word+","
else:
aspect_text += opinion_word+aspect+","
aspect_text = aspect_text[:-1]
return aspect_text
def format_print(results):
for result in results:
aspect, opinions, sentiment = result["aspect"], result["opinions"], result["sentiment"]
print(f"aspect: {aspect}, opinions: {opinions}, sentiment: {sentiment}")
print()
return f"aspect: {aspect}, opinions: {opinions}, sentiment: {sentiment}"
def is_target_first(text, target, word):
return text.find(target) <= text.find(word)
def ext_load_dict(dict_path):
with open(dict_path, "r", encoding="utf-8") as f:
words = [word.strip() for word in f.readlines()]
word2id = dict(zip(words, range(len(words))))
id2word = dict((v, k) for k, v in word2id.items())
return word2id, id2word
def cls_load_dict(dict_path):
with open(dict_path, "r", encoding="utf-8") as f:
words = [word.strip() for word in f.readlines()]
word2id = dict(zip(words, range(len(words))))
id2word = dict((v, k) for k, v in word2id.items())
return word2id, id2word
def read(data_path):
with open(data_path, "r", encoding="utf-8") as f:
for line in f.readlines():
items = line.strip().split("\t")
assert len(items) == 3
example = {"label": int(
items[0]), "target_text": items[1], "text": items[2]}
yield example
def convert_example_to_feature(example, tokenizer, label2id, max_seq_len=512, is_test=False):
encoded_inputs = tokenizer(
example["target_text"], text_pair=example["text"], max_seq_len=max_seq_len, return_length=True)
if not is_test:
label = example["label"]
return encoded_inputs["input_ids"], encoded_inputs["token_type_ids"], encoded_inputs["seq_len"], label
return encoded_inputs["input_ids"], encoded_inputs["token_type_ids"], encoded_inputs["seq_len"]
class SkepForTokenClassification(paddle.nn.Layer):
def __init__(self, skep, num_classes=2, dropout=None):
super(SkepForTokenClassification, self).__init__()
self.num_classes = num_classes
self.skep = skep
self.dropout = paddle.nn.Dropout(
dropout if dropout is not None else self.skep.config["hidden_dropout_prob"])
self.classifier = paddle.nn.Linear(
self.skep.config["hidden_size"], num_classes)
def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None):
sequence_output, _ = self.skep(
input_ids, token_type_ids=token_type_ids, position_ids=position_ids, attention_mask=attention_mask)
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
return logits
class SkepForSequenceClassification(paddle.nn.Layer):
def __init__(self, skep, num_classes=2, dropout=None):
super(SkepForSequenceClassification, self).__init__()
self.num_classes = num_classes
self.skep = skep
self.dropout = paddle.nn.Dropout(
dropout if dropout is not None else self.skep.config["hidden_dropout_prob"])
self.classifier = paddle.nn.Linear(
self.skep.config["hidden_size"], num_classes)
def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None):
_, pooled_output = self.skep(input_ids, token_type_ids=token_type_ids,
position_ids=position_ids, attention_mask=attention_mask)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
return logits
# load dict
model_name = "skep_ernie_1.0_large_ch"
target1_dir = "./skepTokenizer"
target2_dir = "./skepModel"
ext_label2id, ext_id2label = ext_load_dict(label_ext_path)
cls_label2id, cls_id2label = cls_load_dict(label_cls_path)
tokenizer = SkepTokenizer.from_pretrained(target1_dir)
print("label dict loaded.")
# load ext model
ext_state_dict = paddle.load(ext_model_path)
ext_skep = SkepModel.from_pretrained(target2_dir)
ext_model = SkepForTokenClassification(ext_skep, num_classes=len(ext_label2id))
ext_model.load_dict(ext_state_dict)
print("extraction model loaded.")
# load cls model
cls_state_dict = paddle.load(cls_model_path)
cls_skep = ext_skep
cls_model = SkepForSequenceClassification(
cls_skep, num_classes=len(cls_label2id))
cls_model.load_dict(cls_state_dict)
print("classification model loaded.")
def predict(input_text):
ext_model.eval()
cls_model.eval()
# processing input text
encoded_inputs = tokenizer(list(input_text), is_split_into_words=True, max_seq_len=max_seq_len,)
input_ids = paddle.to_tensor([encoded_inputs["input_ids"]])
token_type_ids = paddle.to_tensor([encoded_inputs["token_type_ids"]])
# extract aspect and opinion words
logits = ext_model(input_ids, token_type_ids=token_type_ids)
predictions = logits.argmax(axis=2).numpy()[0]
tag_seq = [ext_id2label[idx] for idx in predictions][1:-1]
aps = decoding(input_text, tag_seq)
# predict sentiment for aspect with cls_model
results = []
for ap in aps:
aspect = ap[0]
opinion_words = list(set(ap[1:]))
aspect_text = concate_aspect_and_opinion(input_text, aspect, opinion_words)
encoded_inputs = tokenizer(aspect_text, text_pair=input_text, max_seq_len=max_seq_len, return_length=True)
input_ids = paddle.to_tensor([encoded_inputs["input_ids"]])
token_type_ids = paddle.to_tensor([encoded_inputs["token_type_ids"]])
logits = cls_model(input_ids, token_type_ids=token_type_ids)
prediction = logits.argmax(axis=1).numpy()[0]
result = {"aspect": aspect, "opinions": opinion_words, "sentiment": cls_id2label[prediction]}
results.append(result)
# print results
return format_print(results)
max_seq_len = 1024
gr.Interface(inputs=["text"],outputs=["text"],fn= predict).launch() |