Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import uuid
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
import spaces
|
8 |
+
import torch
|
9 |
+
from diffusers import DiffusionPipeline
|
10 |
+
|
11 |
+
MAX_SEED = np.iinfo(np.int32).max
|
12 |
+
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
|
13 |
+
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536"))
|
14 |
+
|
15 |
+
device = torch.device("cuda:0")
|
16 |
+
|
17 |
+
pipe = DiffusionPipeline.from_pretrained(
|
18 |
+
"playgroundai/playground-v2.5-1024px-aesthetic",
|
19 |
+
torch_dtype=torch.float16,
|
20 |
+
use_safetensors=True,
|
21 |
+
add_watermarker=False,
|
22 |
+
variant="fp16"
|
23 |
+
)
|
24 |
+
pipe.to(device)
|
25 |
+
print("Loaded on Device!")
|
26 |
+
|
27 |
+
|
28 |
+
def save_image(img):
|
29 |
+
unique_name = str(uuid.uuid4()) + ".png"
|
30 |
+
img.save(unique_name)
|
31 |
+
return unique_name
|
32 |
+
|
33 |
+
|
34 |
+
@spaces.GPU(enable_queue=True)
|
35 |
+
def generate(
|
36 |
+
prompt: str,
|
37 |
+
progress=gr.Progress(track_tqdm=True),
|
38 |
+
):
|
39 |
+
seed = random.randint(0, 2147483647)
|
40 |
+
pipe.to(device)
|
41 |
+
generator = torch.Generator().manual_seed(seed)
|
42 |
+
|
43 |
+
images = pipe(
|
44 |
+
prompt=prompt,
|
45 |
+
negative_prompt=None,
|
46 |
+
width=1024,
|
47 |
+
height=1024,
|
48 |
+
guidance_scale=3,
|
49 |
+
num_inference_steps=25,
|
50 |
+
generator=generator,
|
51 |
+
num_images_per_prompt=1,
|
52 |
+
use_resolution_binning=True,
|
53 |
+
output_type="pil",
|
54 |
+
).images
|
55 |
+
|
56 |
+
image_paths = [save_image(img) for img in images]
|
57 |
+
return image_paths
|
58 |
+
|
59 |
+
with gr.Blocks() as demo:
|
60 |
+
gr.Markdown("# Blossom Playground v2.5")
|
61 |
+
with gr.Group():
|
62 |
+
with gr.Row():
|
63 |
+
prompt = gr.Text(
|
64 |
+
label="Prompt",
|
65 |
+
show_label=False,
|
66 |
+
max_lines=1,
|
67 |
+
placeholder="Enter your prompt",
|
68 |
+
container=False,
|
69 |
+
)
|
70 |
+
run_button = gr.Button("Run", scale=0)
|
71 |
+
result = gr.Gallery(label="Result", columns=1, show_label=False)
|
72 |
+
|
73 |
+
gr.on(
|
74 |
+
triggers=[
|
75 |
+
prompt.submit,
|
76 |
+
run_button.click,
|
77 |
+
],
|
78 |
+
fn=generate,
|
79 |
+
inputs=[
|
80 |
+
prompt,
|
81 |
+
],
|
82 |
+
outputs=[result],
|
83 |
+
api_name="run",
|
84 |
+
)
|
85 |
+
|
86 |
+
if __name__ == "__main__":
|
87 |
+
demo.queue(max_size=20).launch()
|