File size: 7,426 Bytes
94380fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import streamlit as st
import requests
import base64
import os
import asyncio
from huggingface_hub import HfApi
import plotly.express as px

# Initialize the Hugging Face API
api = HfApi()

# Directory to save the downloaded and generated files
HTML_DIR = "generated_html_pages"
if not os.path.exists(HTML_DIR):
    os.makedirs(HTML_DIR)

# Default list of Hugging Face usernames
default_users = {
    "users": [
        "awacke1", "rogerxavier", "jonatasgrosman", "kenshinn", "Csplk", "DavidVivancos",
        "cdminix", "Jaward", "TuringsSolutions", "Severian", "Wauplin",
        "phosseini", "Malikeh1375", "gokaygokay", "MoritzLaurer", "mrm8488",
        "TheBloke", "lhoestq", "xw-eric", "Paul", "Muennighoff",
        "ccdv", "haonan-li", "chansung", "lukaemon", "hails",
        "pharmapsychotic", "KingNish", "merve", "ameerazam08", "ashleykleynhans"
    ]
}

# Asynchronous function to fetch user content using Hugging Face API
async def fetch_user_content(username):
    try:
        # Fetch models and datasets
        models = list(await asyncio.to_thread(api.list_models, author=username))
        datasets = list(await asyncio.to_thread(api.list_datasets, author=username))
        return {
            "username": username,
            "models": models,
            "datasets": datasets
        }
    except Exception as e:
        return {"username": username, "error": str(e)}

# Fetch all users concurrently
async def fetch_all_users(usernames):
    tasks = [fetch_user_content(username) for username in usernames]
    return await asyncio.gather(*tasks)

# Function to download the user page using requests
def download_user_page(username):
    url = f"https://huggingface.co/{username}"
    try:
        response = requests.get(url)
        response.raise_for_status()
        html_content = response.text
        html_file_path = os.path.join(HTML_DIR, f"{username}.html")
        with open(html_file_path, "w", encoding='utf-8') as html_file:
            html_file.write(html_content)
        return html_file_path, None
    except Exception as e:
        return None, str(e)

# Function to base64 encode the HTML file
def encode_html_to_base64(html_file_path):
    try:
        with open(html_file_path, "rb") as file:
            encoded_bytes = base64.b64encode(file.read())
            encoded_str = encoded_bytes.decode('utf-8')
        return encoded_str, None
    except Exception as e:
        return None, str(e)

# Cache the downloaded and encoded content to avoid redundant operations
@st.cache_data(show_spinner=False, ttl=3600)
def get_cached_base64_html(username):
    html_file_path, error = download_user_page(username)
    if error:
        return None, error
    encoded_str, encode_error = encode_html_to_base64(html_file_path)
    if encode_error:
        return None, encode_error
    return encoded_str, None

# Streamlit app setup
st.title("Hugging Face User Page Downloader 📄✨")

# Text area with default list of usernames
user_input = st.text_area(
    "Enter Hugging Face usernames (one per line):",
    value="\n".join(default_users["users"]),
    height=300
)

# Show User Content button
if st.button("Show User Content"):
    if user_input:
        username_list = [username.strip() for username in user_input.split('\n') if username.strip()]
        
        # Collect statistics for Plotly graphs
        stats = {"username": [], "models_count": [], "datasets_count": []}

        st.markdown("### User Content Overview")
        for username in username_list:
            with st.container():
                # Profile link
                st.markdown(f"**{username}** [🔗 Profile](https://huggingface.co/{username})")

                # Fetch models and datasets
                user_data = asyncio.run(fetch_user_content(username))
                if "error" in user_data:
                    st.warning(f"{username}: {user_data['error']} - Something went wrong! ⚠️")
                else:
                    models = user_data["models"]
                    datasets = user_data["datasets"]

                    # Encode the downloaded HTML page to base64
                    base64_html, encode_error = get_cached_base64_html(username)
                    if base64_html:
                        # Provide a download link for the base64-encoded HTML
                        b64_filename = f"{username}_base64.txt"
                        st.download_button(
                            label=f"📥 Download {username}'s Base64 Encoded HTML",
                            data=base64_html,
                            file_name=b64_filename,
                            mime="text/plain"
                        )
                    else:
                        st.error(f"Failed to encode HTML for {username}: {encode_error}")

                    # Add to statistics
                    stats["username"].append(username)
                    stats["models_count"].append(len(models))
                    stats["datasets_count"].append(len(datasets))

                    # Display models
                    with st.expander(f"🧠 Models ({len(models)})", expanded=False):
                        if models:
                            for model in models:
                                model_name = model.modelId.split("/")[-1]
                                st.markdown(f"- [{model_name}](https://huggingface.co/{model.modelId})")
                        else:
                            st.markdown("No models found. 🤷‍♂️")

                    # Display datasets
                    with st.expander(f"📚 Datasets ({len(datasets)})", expanded=False):
                        if datasets:
                            for dataset in datasets:
                                dataset_name = dataset.id.split("/")[-1]
                                st.markdown(f"- [{dataset_name}](https://huggingface.co/datasets/{dataset.id})")
                        else:
                            st.markdown("No datasets found. 🤷‍♀️")

                st.markdown("---")

        # Plotly graphs to visualize the number of models and datasets each user has
        if stats["username"]:
            st.markdown("### User Content Statistics")

            # Number of models per user
            fig_models = px.bar(
                x=stats["username"],
                y=stats["models_count"],
                labels={'x': 'Username', 'y': 'Number of Models'},
                title="Number of Models per User"
            )
            st.plotly_chart(fig_models)

            # Number of datasets per user
            fig_datasets = px.bar(
                x=stats["username"],
                y=stats["datasets_count"],
                labels={'x': 'Username', 'y': 'Number of Datasets'},
                title="Number of Datasets per User"
            )
            st.plotly_chart(fig_datasets)

    else:
        st.warning("Please enter at least one username. Don't be shy! 😅")

# Sidebar instructions
st.sidebar.markdown("""
## How to use:
1. The text area is pre-filled with a list of Hugging Face usernames. You can edit this list or add more usernames.
2. Click **'Show User Content'**.
3. View each user's models and datasets along with a link to their Hugging Face profile.
4. **Download a base64-encoded HTML page** for each user by clicking the download button.
5. Check out the statistics visualizations below!
""")