File size: 7,426 Bytes
94380fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import streamlit as st
import requests
import base64
import os
import asyncio
from huggingface_hub import HfApi
import plotly.express as px
# Initialize the Hugging Face API
api = HfApi()
# Directory to save the downloaded and generated files
HTML_DIR = "generated_html_pages"
if not os.path.exists(HTML_DIR):
os.makedirs(HTML_DIR)
# Default list of Hugging Face usernames
default_users = {
"users": [
"awacke1", "rogerxavier", "jonatasgrosman", "kenshinn", "Csplk", "DavidVivancos",
"cdminix", "Jaward", "TuringsSolutions", "Severian", "Wauplin",
"phosseini", "Malikeh1375", "gokaygokay", "MoritzLaurer", "mrm8488",
"TheBloke", "lhoestq", "xw-eric", "Paul", "Muennighoff",
"ccdv", "haonan-li", "chansung", "lukaemon", "hails",
"pharmapsychotic", "KingNish", "merve", "ameerazam08", "ashleykleynhans"
]
}
# Asynchronous function to fetch user content using Hugging Face API
async def fetch_user_content(username):
try:
# Fetch models and datasets
models = list(await asyncio.to_thread(api.list_models, author=username))
datasets = list(await asyncio.to_thread(api.list_datasets, author=username))
return {
"username": username,
"models": models,
"datasets": datasets
}
except Exception as e:
return {"username": username, "error": str(e)}
# Fetch all users concurrently
async def fetch_all_users(usernames):
tasks = [fetch_user_content(username) for username in usernames]
return await asyncio.gather(*tasks)
# Function to download the user page using requests
def download_user_page(username):
url = f"https://huggingface.co/{username}"
try:
response = requests.get(url)
response.raise_for_status()
html_content = response.text
html_file_path = os.path.join(HTML_DIR, f"{username}.html")
with open(html_file_path, "w", encoding='utf-8') as html_file:
html_file.write(html_content)
return html_file_path, None
except Exception as e:
return None, str(e)
# Function to base64 encode the HTML file
def encode_html_to_base64(html_file_path):
try:
with open(html_file_path, "rb") as file:
encoded_bytes = base64.b64encode(file.read())
encoded_str = encoded_bytes.decode('utf-8')
return encoded_str, None
except Exception as e:
return None, str(e)
# Cache the downloaded and encoded content to avoid redundant operations
@st.cache_data(show_spinner=False, ttl=3600)
def get_cached_base64_html(username):
html_file_path, error = download_user_page(username)
if error:
return None, error
encoded_str, encode_error = encode_html_to_base64(html_file_path)
if encode_error:
return None, encode_error
return encoded_str, None
# Streamlit app setup
st.title("Hugging Face User Page Downloader 📄✨")
# Text area with default list of usernames
user_input = st.text_area(
"Enter Hugging Face usernames (one per line):",
value="\n".join(default_users["users"]),
height=300
)
# Show User Content button
if st.button("Show User Content"):
if user_input:
username_list = [username.strip() for username in user_input.split('\n') if username.strip()]
# Collect statistics for Plotly graphs
stats = {"username": [], "models_count": [], "datasets_count": []}
st.markdown("### User Content Overview")
for username in username_list:
with st.container():
# Profile link
st.markdown(f"**{username}** [🔗 Profile](https://huggingface.co/{username})")
# Fetch models and datasets
user_data = asyncio.run(fetch_user_content(username))
if "error" in user_data:
st.warning(f"{username}: {user_data['error']} - Something went wrong! ⚠️")
else:
models = user_data["models"]
datasets = user_data["datasets"]
# Encode the downloaded HTML page to base64
base64_html, encode_error = get_cached_base64_html(username)
if base64_html:
# Provide a download link for the base64-encoded HTML
b64_filename = f"{username}_base64.txt"
st.download_button(
label=f"📥 Download {username}'s Base64 Encoded HTML",
data=base64_html,
file_name=b64_filename,
mime="text/plain"
)
else:
st.error(f"Failed to encode HTML for {username}: {encode_error}")
# Add to statistics
stats["username"].append(username)
stats["models_count"].append(len(models))
stats["datasets_count"].append(len(datasets))
# Display models
with st.expander(f"🧠 Models ({len(models)})", expanded=False):
if models:
for model in models:
model_name = model.modelId.split("/")[-1]
st.markdown(f"- [{model_name}](https://huggingface.co/{model.modelId})")
else:
st.markdown("No models found. 🤷♂️")
# Display datasets
with st.expander(f"📚 Datasets ({len(datasets)})", expanded=False):
if datasets:
for dataset in datasets:
dataset_name = dataset.id.split("/")[-1]
st.markdown(f"- [{dataset_name}](https://huggingface.co/datasets/{dataset.id})")
else:
st.markdown("No datasets found. 🤷♀️")
st.markdown("---")
# Plotly graphs to visualize the number of models and datasets each user has
if stats["username"]:
st.markdown("### User Content Statistics")
# Number of models per user
fig_models = px.bar(
x=stats["username"],
y=stats["models_count"],
labels={'x': 'Username', 'y': 'Number of Models'},
title="Number of Models per User"
)
st.plotly_chart(fig_models)
# Number of datasets per user
fig_datasets = px.bar(
x=stats["username"],
y=stats["datasets_count"],
labels={'x': 'Username', 'y': 'Number of Datasets'},
title="Number of Datasets per User"
)
st.plotly_chart(fig_datasets)
else:
st.warning("Please enter at least one username. Don't be shy! 😅")
# Sidebar instructions
st.sidebar.markdown("""
## How to use:
1. The text area is pre-filled with a list of Hugging Face usernames. You can edit this list or add more usernames.
2. Click **'Show User Content'**.
3. View each user's models and datasets along with a link to their Hugging Face profile.
4. **Download a base64-encoded HTML page** for each user by clicking the download button.
5. Check out the statistics visualizations below!
""")
|