File size: 5,296 Bytes
3d5dd87
 
f389421
00551a6
f389421
281bb73
f389421
3d5dd87
00551a6
 
 
 
 
281bb73
3d5dd87
 
 
 
 
 
 
 
 
 
 
281bb73
f389421
3d5dd87
281bb73
f389421
 
3d5dd87
 
 
 
281bb73
3d5dd87
 
281bb73
3d5dd87
 
281bb73
f389421
 
 
 
00551a6
281bb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00551a6
 
 
 
 
 
 
 
bbd8a08
 
 
 
 
 
 
 
281bb73
 
 
 
3d5dd87
 
281bb73
3d5dd87
 
281bb73
3d5dd87
 
 
 
 
bbd8a08
 
 
 
 
 
 
 
 
 
 
00551a6
bbd8a08
 
3d5dd87
 
281bb73
3d5dd87
281bb73
3d5dd87
 
 
 
281bb73
 
3d5dd87
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import streamlit as st
from huggingface_hub import HfApi
import asyncio
import os

# Initialize the Hugging Face API
api = HfApi()

# Directory to save the generated HTML files
HTML_DIR = "generated_html_pages"
if not os.path.exists(HTML_DIR):
    os.makedirs(HTML_DIR)

# Default list of Hugging Face usernames - where all the magic begins! ๐Ÿช„
default_users = {
    "users": [
        "awacke1", "rogerxavier", "jonatasgrosman", "kenshinn", "Csplk", "DavidVivancos",
        "cdminix", "Jaward", "TuringsSolutions", "Severian", "Wauplin",
        "phosseini", "Malikeh1375", "gokaygokay", "MoritzLaurer", "mrm8488",
        "TheBloke", "lhoestq", "xw-eric", "Paul", "Muennighoff",
        "ccdv", "haonan-li", "chansung", "lukaemon", "hails",
        "pharmapsychotic", "KingNish", "merve", "ameerazam08", "ashleykleynhans"
    ]
}

# Asynchronous function to fetch user content - because why wait when you can multitask? ๐Ÿš€
async def fetch_user_content(username):
    try:
        # Fetch models and datasets - the stars of our show! ๐ŸŒŸ
        models = await asyncio.to_thread(api.list_models, author=username)
        datasets = await asyncio.to_thread(api.list_datasets, author=username)
        
        return {
            "username": username,
            "models": models,
            "datasets": datasets
        }
    except Exception as e:
        # Oops! Something went wrong - blame it on the gremlins! ๐Ÿ˜ˆ
        return {"username": username, "error": str(e)}

# Fetch all users concurrently - more hands (or threads) make light work! ๐Ÿ’ช
async def fetch_all_users(usernames):
    tasks = [fetch_user_content(username) for username in usernames]
    return await asyncio.gather(*tasks)

# Generate HTML content for a user and save it to a file - because who doesn't love a good download link? ๐Ÿ’พ
def generate_html_page(username, models, datasets):
    html_content = f"""
    <html>
    <head>
        <title>{username}'s Hugging Face Content</title>
    </head>
    <body>
        <h1>{username}'s Hugging Face Profile</h1>
        <p><a href="https://huggingface.co/{username}">๐Ÿ”— Profile Link</a></p>
        <h2>๐Ÿง  Models</h2>
        <ul>
    """
    for model in models:
        model_name = model.modelId.split("/")[-1]
        html_content += f'<li><a href="https://huggingface.co/{model.modelId}">{model_name}</a></li>'
    
    html_content += """
        </ul>
        <h2>๐Ÿ“š Datasets</h2>
        <ul>
    """
    for dataset in datasets:
        dataset_name = dataset.id.split("/")[-1]
        html_content += f'<li><a href="https://huggingface.co/datasets/{dataset.id}">{dataset_name}</a></li>'
    
    html_content += """
        </ul>
    </body>
    </html>
    """

    # Save the HTML content to a file
    html_file_path = os.path.join(HTML_DIR, f"{username}.html")
    with open(html_file_path, "w") as html_file:
        html_file.write(html_content)

    return html_file_path

# Cache the HTML generation process using Streamlit's caching decorator
@st.cache_data(show_spinner=False)
def get_cached_html_page(username):
    user_data = asyncio.run(fetch_user_content(username))
    if "error" in user_data:
        return None, user_data["error"]
    return generate_html_page(username, user_data["models"], user_data["datasets"]), None

# Streamlit app setup - the nerve center of our operation! ๐ŸŽ›๏ธ
st.title("Hugging Face User Content Display - Let's Automate Some Fun! ๐ŸŽ‰")

# Convert the default users list to a string - because nobody likes typing out long lists! ๐Ÿ“
default_users_str = "\n".join(default_users["users"])

# Text area with default list of usernames - feel free to add your friends! ๐Ÿ‘ฅ
usernames = st.text_area("Enter Hugging Face usernames (one per line):", value=default_users_str, height=300)

# Show User Content button - the big red button! (But actually it's blue) ๐Ÿ–ฑ๏ธ
if st.button("Show User Content"):
    if usernames:
        username_list = [username.strip() for username in usernames.split('\n') if username.strip()]

        st.markdown("### User Content Overview")
        for username in username_list:
            with st.container():
                # Profile link - because everyone deserves their 15 seconds of fame! ๐ŸŽค
                st.markdown(f"**{username}** [๐Ÿ”— Profile](https://huggingface.co/{username})")

                # Generate HTML page and provide download link - because who wouldn't want a custom webpage? ๐ŸŒ
                html_file_path, error = get_cached_html_page(username)

                if error:
                    st.warning(f"{username}: {error} - Looks like the AI needs a coffee break โ˜•")
                else:
                    st.markdown(f"[๐Ÿ“„ Download {username}'s HTML Page]({html_file_path})")

                st.markdown("---")

    else:
        st.warning("Please enter at least one username. Don't be shy! ๐Ÿ˜…")

# Sidebar instructions - just in case you get lost! ๐Ÿ—บ๏ธ
st.sidebar.markdown("""
## How to use:
1. The text area is pre-filled with a list of Hugging Face usernames. You can edit this list or add more usernames.
2. Click 'Show User Content'.
3. View the user's models and datasets along with a link to their Hugging Face profile.
4. Download an HTML page for each user to use the absolute links offline!
""")