awacke1's picture
Create app.py
3da9e90 verified
raw
history blame
9.75 kB
import streamlit as st
import requests
import base64
import os
import asyncio
from huggingface_hub import HfApi, snapshot_download
import plotly.express as px
import zipfile
import tempfile
import shutil
# Initialize the Hugging Face API
api = HfApi()
# Directories for saving files
HTML_DIR = "generated_html_pages"
ZIP_DIR = "generated_zips"
SNAPSHOT_DIR = "snapshot_downloads"
for directory in [HTML_DIR, ZIP_DIR, SNAPSHOT_DIR]:
if not os.path.exists(directory):
os.makedirs(directory)
# Default list of Hugging Face usernames
default_users = {
"users": [
"awacke1", "rogerxavier", "jonatasgrosman", "kenshinn", "Csplk", "DavidVivancos",
"cdminix", "Jaward", "TuringsSolutions", "Severian", "Wauplin",
"phosseini", "Malikeh1375", "gokaygokay", "MoritzLaurer", "mrm8488",
"TheBloke", "lhoestq", "xw-eric", "Paul", "Muennighoff",
"ccdv", "haonan-li", "chansung", "lukaemon", "hails",
"pharmapsychotic", "KingNish", "merve", "ameerazam08", "ashleykleynhans"
]
}
async def fetch_user_content(username):
try:
models = list(await asyncio.to_thread(api.list_models, author=username))
datasets = list(await asyncio.to_thread(api.list_datasets, author=username))
return {
"username": username,
"models": models,
"datasets": datasets
}
except Exception as e:
return {"username": username, "error": str(e)}
def download_user_page(username):
url = f"https://huggingface.co/{username}"
try:
response = requests.get(url)
response.raise_for_status()
html_content = response.text
html_file_path = os.path.join(HTML_DIR, f"{username}.html")
with open(html_file_path, "w", encoding='utf-8') as html_file:
html_file.write(html_content)
return html_file_path, None
except Exception as e:
return None, str(e)
@st.cache_resource
def create_zip_of_files(files, zip_name):
zip_file_path = os.path.join(ZIP_DIR, zip_name)
with zipfile.ZipFile(zip_file_path, 'w') as zipf:
for file in files:
zipf.write(file, arcname=os.path.basename(file))
return zip_file_path
@st.cache_resource
def get_download_link(file_path, link_text):
with open(file_path, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
return f'<a href="data:application/zip;base64,{b64}" download="{os.path.basename(file_path)}">{link_text}</a>'
async def fetch_all_users(usernames):
tasks = [fetch_user_content(username) for username in usernames]
return await asyncio.gather(*tasks)
def get_all_html_files(usernames):
html_files = []
errors = {}
for username in usernames:
html_file, error = download_user_page(username)
if html_file:
html_files.append(html_file)
else:
errors[username] = error
return html_files, errors
def perform_snapshot_download(repo_id, repo_type):
try:
temp_dir = tempfile.mkdtemp()
snapshot_download(repo_id=repo_id, repo_type=repo_type, local_dir=temp_dir)
zip_name = f"{repo_id.replace('/', '_')}_{repo_type}.zip"
zip_path = os.path.join(SNAPSHOT_DIR, zip_name)
shutil.make_archive(zip_path[:-4], 'zip', temp_dir)
shutil.rmtree(temp_dir)
return zip_path
except Exception as e:
return str(e)
st.title("Hugging Face User Page Downloader & Zipper ๐Ÿ“„โž•๐Ÿ“ฆ")
user_input = st.text_area(
"Enter Hugging Face usernames (one per line):",
value="\n".join(default_users["users"]),
height=300
)
if st.button("Show User Content and Download Snapshots"):
if user_input:
username_list = [username.strip() for username in user_input.split('\n') if username.strip()]
user_data_list = asyncio.run(fetch_all_users(username_list))
stats = {"username": [], "models_count": [], "datasets_count": []}
successful_html_files = []
snapshot_downloads = []
st.markdown("### User Content Overview")
for user_data in user_data_list:
username = user_data["username"]
with st.container():
st.markdown(f"**{username}** [๐Ÿ”— Profile](https://huggingface.co/{username})")
if "error" in user_data:
st.warning(f"{username}: {user_data['error']} - Something went wrong! โš ๏ธ")
else:
models = user_data["models"]
datasets = user_data["datasets"]
html_file_path, download_error = download_user_page(username)
if html_file_path:
successful_html_files.append(html_file_path)
st.success(f"โœ… Successfully downloaded {username}'s page.")
else:
st.error(f"โŒ Failed to download {username}'s page: {download_error}")
stats["username"].append(username)
stats["models_count"].append(len(models))
stats["datasets_count"].append(len(datasets))
with st.expander(f"๐Ÿง  Models ({len(models)})", expanded=False):
if models:
for model in models:
model_name = model.modelId.split("/")[-1]
st.markdown(f"- [{model_name}](https://huggingface.co/{model.modelId})")
if st.button(f"Download Snapshot: {model_name}", key=f"model_{model.modelId}"):
with st.spinner(f"Downloading snapshot for {model_name}..."):
result = perform_snapshot_download(model.modelId, "model")
if isinstance(result, str):
st.error(f"Failed to download {model_name}: {result}")
else:
snapshot_downloads.append(result)
st.success(f"Successfully downloaded snapshot for {model_name}")
else:
st.markdown("No models found. ๐Ÿคทโ€โ™‚๏ธ")
with st.expander(f"๐Ÿ“š Datasets ({len(datasets)})", expanded=False):
if datasets:
for dataset in datasets:
dataset_name = dataset.id.split("/")[-1]
st.markdown(f"- [{dataset_name}](https://huggingface.co/datasets/{dataset.id})")
if st.button(f"Download Snapshot: {dataset_name}", key=f"dataset_{dataset.id}"):
with st.spinner(f"Downloading snapshot for {dataset_name}..."):
result = perform_snapshot_download(dataset.id, "dataset")
if isinstance(result, str):
st.error(f"Failed to download {dataset_name}: {result}")
else:
snapshot_downloads.append(result)
st.success(f"Successfully downloaded snapshot for {dataset_name}")
else:
st.markdown("No datasets found. ๐Ÿคทโ€โ™€๏ธ")
st.markdown("---")
if successful_html_files:
html_zip_path = create_zip_of_files(successful_html_files, "HuggingFace_User_Pages.zip")
html_download_link = get_download_link(html_zip_path, "๐Ÿ“ฅ Download All HTML Pages as ZIP")
st.markdown(html_download_link, unsafe_allow_html=True)
else:
st.warning("No HTML files were successfully downloaded to create a ZIP archive.")
if snapshot_downloads:
snapshot_zip_path = create_zip_of_files(snapshot_downloads, "HuggingFace_Snapshots.zip")
snapshot_download_link = get_download_link(snapshot_zip_path, "๐Ÿ“ฅ Download All Snapshots as ZIP")
st.markdown(snapshot_download_link, unsafe_allow_html=True)
if stats["username"]:
st.markdown("### User Content Statistics")
fig_models = px.bar(
x=stats["username"],
y=stats["models_count"],
labels={'x': 'Username', 'y': 'Number of Models'},
title="Number of Models per User"
)
st.plotly_chart(fig_models)
fig_datasets = px.bar(
x=stats["username"],
y=stats["datasets_count"],
labels={'x': 'Username', 'y': 'Number of Datasets'},
title="Number of Datasets per User"
)
st.plotly_chart(fig_datasets)
else:
st.warning("Please enter at least one username. Don't be shy! ๐Ÿ˜…")
st.sidebar.markdown("""
## How to use:
1. The text area is pre-filled with a list of Hugging Face usernames. You can edit this list or add more usernames.
2. Click **'Show User Content and Download Snapshots'**.
3. View each user's models and datasets along with a link to their Hugging Face profile.
4. For each model or dataset, you can click the "Download Snapshot" button to download a snapshot.
5. **Download ZIP archives** containing all the HTML pages and snapshots by clicking the download links.
6. Check out the statistics visualizations below!
""")