Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import streamlit as st
|
|
2 |
from huggingface_hub import HfApi
|
3 |
import asyncio
|
4 |
import os
|
|
|
5 |
|
6 |
# Initialize the Hugging Face API
|
7 |
api = HfApi()
|
@@ -89,7 +90,7 @@ def get_cached_html_page(username):
|
|
89 |
user_data = asyncio.run(fetch_user_content(username))
|
90 |
if "error" in user_data:
|
91 |
return None, user_data["error"]
|
92 |
-
return generate_html_page(username, user_data["models"], user_data["datasets"]),
|
93 |
|
94 |
# Streamlit app setup - the nerve center of our operation! ๐๏ธ
|
95 |
st.title("Hugging Face User Content Display - Let's Automate Some Fun! ๐")
|
@@ -105,6 +106,9 @@ if st.button("Show User Content"):
|
|
105 |
if usernames:
|
106 |
username_list = [username.strip() for username in usernames.split('\n') if username.strip()]
|
107 |
|
|
|
|
|
|
|
108 |
st.markdown("### User Content Overview")
|
109 |
for username in username_list:
|
110 |
with st.container():
|
@@ -112,15 +116,50 @@ if st.button("Show User Content"):
|
|
112 |
st.markdown(f"**{username}** [๐ Profile](https://huggingface.co/{username})")
|
113 |
|
114 |
# Generate HTML page and provide download link - because who wouldn't want a custom webpage? ๐
|
115 |
-
html_file_path,
|
116 |
|
117 |
-
if
|
118 |
-
st.warning(f"{username}: {
|
119 |
else:
|
120 |
st.markdown(f"[๐ Download {username}'s HTML Page]({html_file_path})")
|
121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
st.markdown("---")
|
123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
else:
|
125 |
st.warning("Please enter at least one username. Don't be shy! ๐
")
|
126 |
|
@@ -131,4 +170,5 @@ st.sidebar.markdown("""
|
|
131 |
2. Click 'Show User Content'.
|
132 |
3. View the user's models and datasets along with a link to their Hugging Face profile.
|
133 |
4. Download an HTML page for each user to use the absolute links offline!
|
|
|
134 |
""")
|
|
|
2 |
from huggingface_hub import HfApi
|
3 |
import asyncio
|
4 |
import os
|
5 |
+
import plotly.express as px
|
6 |
|
7 |
# Initialize the Hugging Face API
|
8 |
api = HfApi()
|
|
|
90 |
user_data = asyncio.run(fetch_user_content(username))
|
91 |
if "error" in user_data:
|
92 |
return None, user_data["error"]
|
93 |
+
return generate_html_page(username, user_data["models"], user_data["datasets"]), user_data
|
94 |
|
95 |
# Streamlit app setup - the nerve center of our operation! ๐๏ธ
|
96 |
st.title("Hugging Face User Content Display - Let's Automate Some Fun! ๐")
|
|
|
106 |
if usernames:
|
107 |
username_list = [username.strip() for username in usernames.split('\n') if username.strip()]
|
108 |
|
109 |
+
# Collect statistics for Plotly graphs
|
110 |
+
stats = {"username": [], "models_count": [], "datasets_count": []}
|
111 |
+
|
112 |
st.markdown("### User Content Overview")
|
113 |
for username in username_list:
|
114 |
with st.container():
|
|
|
116 |
st.markdown(f"**{username}** [๐ Profile](https://huggingface.co/{username})")
|
117 |
|
118 |
# Generate HTML page and provide download link - because who wouldn't want a custom webpage? ๐
|
119 |
+
html_file_path, user_data = get_cached_html_page(username)
|
120 |
|
121 |
+
if not html_file_path:
|
122 |
+
st.warning(f"{username}: {user_data} - Looks like the AI needs a coffee break โ")
|
123 |
else:
|
124 |
st.markdown(f"[๐ Download {username}'s HTML Page]({html_file_path})")
|
125 |
|
126 |
+
# Add to statistics for Plotly graphs
|
127 |
+
stats["username"].append(username)
|
128 |
+
stats["models_count"].append(len(user_data["models"]))
|
129 |
+
stats["datasets_count"].append(len(user_data["datasets"]))
|
130 |
+
|
131 |
+
# Models section with expander - ๐ง because AI models are brainy! ๐ง
|
132 |
+
with st.expander(f"๐ง Models ({len(user_data['models'])})", expanded=False):
|
133 |
+
if user_data['models']:
|
134 |
+
for model in user_data['models']:
|
135 |
+
model_name = model.modelId.split("/")[-1]
|
136 |
+
st.markdown(f"- [{model_name}](https://huggingface.co/{model.modelId})")
|
137 |
+
else:
|
138 |
+
st.markdown("No models found. Did you check under the rug? ๐ต๏ธโโ๏ธ")
|
139 |
+
|
140 |
+
# Datasets section with expander - ๐ because data is the foundation of AI! ๐
|
141 |
+
with st.expander(f"๐ Datasets ({len(user_data['datasets'])})", expanded=False):
|
142 |
+
if user_data['datasets']:
|
143 |
+
for dataset in user_data['datasets']:
|
144 |
+
dataset_name = dataset.id.split("/")[-1]
|
145 |
+
st.markdown(f"- [{dataset_name}](https://huggingface.co/datasets/{dataset.id})")
|
146 |
+
else:
|
147 |
+
st.markdown("No datasets found. Maybe theyโre still baking in the oven? ๐ช")
|
148 |
+
|
149 |
st.markdown("---")
|
150 |
|
151 |
+
# Plotly graphs to visualize the number of models and datasets each user has
|
152 |
+
if stats["username"]:
|
153 |
+
st.markdown("### User Content Statistics")
|
154 |
+
|
155 |
+
# Plotting the number of models per user
|
156 |
+
fig_models = px.bar(x=stats["username"], y=stats["models_count"], labels={'x':'Username', 'y':'Number of Models'}, title="Number of Models per User")
|
157 |
+
st.plotly_chart(fig_models)
|
158 |
+
|
159 |
+
# Plotting the number of datasets per user
|
160 |
+
fig_datasets = px.bar(x=stats["username"], y=stats["datasets_count"], labels={'x':'Username', 'y':'Number of Datasets'}, title="Number of Datasets per User")
|
161 |
+
st.plotly_chart(fig_datasets)
|
162 |
+
|
163 |
else:
|
164 |
st.warning("Please enter at least one username. Don't be shy! ๐
")
|
165 |
|
|
|
170 |
2. Click 'Show User Content'.
|
171 |
3. View the user's models and datasets along with a link to their Hugging Face profile.
|
172 |
4. Download an HTML page for each user to use the absolute links offline!
|
173 |
+
5. Check out the statistics visualizations at the end!
|
174 |
""")
|