import streamlit as st from huggingface_hub import HfApi import pandas as pd # Default list of Hugging Face usernames default_users = { "users": [ "awacke1", "rogerxavier", "jonatasgrosman", "kenshinn", "Csplk", "DavidVivancos", "cdminix", "Jaward", "TuringsSolutions", "Severian", "Wauplin", "phosseini", "Malikeh1375", "gokaygokay", "MoritzLaurer", "mrm8488", "TheBloke", "lhoestq", "xw-eric", "Paul", "Muennighoff", "ccdv", "haonan-li", "chansung", "lukaemon", "hails", "pharmapsychotic", "KingNish", "merve", "ameerazam08", "ashleykleynhans" ] } api = HfApi() def get_user_content(username): try: # Fetch models, datasets, and spaces associated with the user models = api.list_models(author=username) datasets = api.list_datasets(author=username) spaces = api.list_spaces(author=username) return { "models": models, "datasets": datasets, "spaces": spaces } except Exception as e: st.error(f"Error fetching content for {username}: {str(e)}") return None st.title("Hugging Face User Content Display") # Convert the default users list to a string default_users_str = "\n".join(default_users["users"]) # Text area with default list of usernames usernames = st.text_area("Enter Hugging Face usernames (one per line):", value=default_users_str, height=300) if st.button("Show User Content"): if usernames: username_list = [username.strip() for username in usernames.split('\n') if username.strip()] results = [] progress_bar = st.progress(0) for i, username in enumerate(username_list): content = get_user_content(username) if content: profile_link = f"https://huggingface.co/{username}" profile_emoji = "🔗" models = [f"[{model.modelId}](https://huggingface.co/{model.modelId})" for model in content['models']] datasets = [f"[{dataset.id}](https://huggingface.co/datasets/{dataset.id})" for dataset in content['datasets']] spaces = [f"[{space.id}](https://huggingface.co/spaces/{space.id})" for space in content['spaces']] results.append({ "Hugging Face": username, "Profile Link": f"[{profile_emoji} Profile]({profile_link})", "Models": models, "Datasets": datasets, "Spaces": spaces }) else: results.append({"Hugging Face": username, "Error": "User content not found"}) progress_bar.progress((i + 1) / len(username_list)) st.markdown("### User Content Overview") for result in results: if "Error" not in result: st.markdown(f"**{result['Hugging Face']}** {result['Profile Link']}") st.markdown("**Models:**") st.markdown("\n".join(result["Models"]) if result["Models"] else "No models found") st.markdown("**Datasets:**") st.markdown("\n".join(result["Datasets"]) if result["Datasets"] else "No datasets found") st.markdown("**Spaces:**") st.markdown("\n".join(result["Spaces"]) if result["Spaces"] else "No spaces found") st.markdown("---") else: st.warning(f"{result['Hugging Face']}: {result['Error']}") else: st.warning("Please enter at least one username.") st.sidebar.markdown(""" ## How to use: 1. The text area is pre-filled with a list of Hugging Face usernames. You can edit this list or add more usernames. 2. Click 'Show User Content'. 3. View the user's models, datasets, and spaces along with a link to their Hugging Face profile. 4. The progress bar shows the status of content retrieval. """)