import streamlit as st
from huggingface_hub import HfApi
import asyncio
import os
# Initialize the Hugging Face API
api = HfApi()
# Directory to save the generated HTML files
HTML_DIR = "generated_html_pages"
if not os.path.exists(HTML_DIR):
os.makedirs(HTML_DIR)
# Default list of Hugging Face usernames - where all the magic begins! πͺ
default_users = {
"users": [
"awacke1", "rogerxavier", "jonatasgrosman", "kenshinn", "Csplk", "DavidVivancos",
"cdminix", "Jaward", "TuringsSolutions", "Severian", "Wauplin",
"phosseini", "Malikeh1375", "gokaygokay", "MoritzLaurer", "mrm8488",
"TheBloke", "lhoestq", "xw-eric", "Paul", "Muennighoff",
"ccdv", "haonan-li", "chansung", "lukaemon", "hails",
"pharmapsychotic", "KingNish", "merve", "ameerazam08", "ashleykleynhans"
]
}
# Asynchronous function to fetch user content - because why wait when you can multitask? π
async def fetch_user_content(username):
try:
# Fetch models and datasets - the stars of our show! π
models = await asyncio.to_thread(api.list_models, author=username)
datasets = await asyncio.to_thread(api.list_datasets, author=username)
return {
"username": username,
"models": models,
"datasets": datasets
}
except Exception as e:
# Oops! Something went wrong - blame it on the gremlins! π
return {"username": username, "error": str(e)}
# Fetch all users concurrently - more hands (or threads) make light work! πͺ
async def fetch_all_users(usernames):
tasks = [fetch_user_content(username) for username in usernames]
return await asyncio.gather(*tasks)
# Generate HTML content for a user and save it to a file - because who doesn't love a good download link? πΎ
def generate_html_page(username, models, datasets):
html_content = f"""
{username}'s Hugging Face Content
{username}'s Hugging Face Profile
π Profile Link
π§ Models
"""
for model in models:
model_name = model.modelId.split("/")[-1]
html_content += f'- {model_name}
'
html_content += """
π Datasets
"""
for dataset in datasets:
dataset_name = dataset.id.split("/")[-1]
html_content += f'- {dataset_name}
'
html_content += """
"""
# Save the HTML content to a file
html_file_path = os.path.join(HTML_DIR, f"{username}.html")
with open(html_file_path, "w") as html_file:
html_file.write(html_content)
return html_file_path
# Cache the HTML generation process using Streamlit's caching decorator
@st.cache_data(show_spinner=False)
def get_cached_html_page(username):
user_data = asyncio.run(fetch_user_content(username))
if "error" in user_data:
return None, user_data["error"]
return generate_html_page(username, user_data["models"], user_data["datasets"]), None
# Streamlit app setup - the nerve center of our operation! ποΈ
st.title("Hugging Face User Content Display - Let's Automate Some Fun! π")
# Convert the default users list to a string - because nobody likes typing out long lists! π
default_users_str = "\n".join(default_users["users"])
# Text area with default list of usernames - feel free to add your friends! π₯
usernames = st.text_area("Enter Hugging Face usernames (one per line):", value=default_users_str, height=300)
# Show User Content button - the big red button! (But actually it's blue) π±οΈ
if st.button("Show User Content"):
if usernames:
username_list = [username.strip() for username in usernames.split('\n') if username.strip()]
st.markdown("### User Content Overview")
for username in username_list:
with st.container():
# Profile link - because everyone deserves their 15 seconds of fame! π€
st.markdown(f"**{username}** [π Profile](https://huggingface.co/{username})")
# Generate HTML page and provide download link - because who wouldn't want a custom webpage? π
html_file_path, error = get_cached_html_page(username)
if error:
st.warning(f"{username}: {error} - Looks like the AI needs a coffee break β")
else:
st.markdown(f"[π Download {username}'s HTML Page]({html_file_path})")
st.markdown("---")
else:
st.warning("Please enter at least one username. Don't be shy! π
")
# Sidebar instructions - just in case you get lost! πΊοΈ
st.sidebar.markdown("""
## How to use:
1. The text area is pre-filled with a list of Hugging Face usernames. You can edit this list or add more usernames.
2. Click 'Show User Content'.
3. View the user's models and datasets along with a link to their Hugging Face profile.
4. Download an HTML page for each user to use the absolute links offline!
""")