File size: 3,472 Bytes
8c0b646
 
d5cc744
13f7861
d5cc744
 
8c0b646
 
d5cc744
fce4c33
d5cc744
 
fce4c33
 
 
 
 
 
 
 
 
d5cc744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fce4c33
2bf7c7e
8c0b646
3566540
8c0b646
 
 
 
 
3566540
8c0b646
3566540
13f7861
8c0b646
b5b3297
38bdfc6
 
 
3566540
38bdfc6
 
 
 
 
 
 
 
 
 
 
8c0b646
 
 
 
3566540
8c0b646
 
3566540
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import gradio as gr
import numpy as np
import torch
from transformers import pipeline, Pipeline
from transformers.pipelines import PIPELINE_REGISTRY, FillMaskPipeline
from transformers import AutoConfig, AutoModel, AutoModelForMaskedLM

unmasker = pipeline("fill-mask", model="anferico/bert-for-patents")
# unmasker = pipeline("temp-scale", model="anferico/bert-for-patents")
example = 'A crustless [MASK] made from two slices of baked bread'
example_dict = {}
example_dict['input_ids'] = example

def add_mask(text, size=1):
    split_text = text.split()
    idx = np.random.randint(len(split_text), size=size)
    for i in idx:
        split_text[i] = '[MASK]'
    return ' '.join(split_text)


class TempScalePipe(FillMaskPipeline):
    def postprocess(self, model_outputs, top_k=5, target_ids=None):
        # Cap top_k if there are targets
        if target_ids is not None and target_ids.shape[0] < top_k:
            top_k = target_ids.shape[0]
        input_ids = model_outputs["input_ids"][0]
        outputs = model_outputs["logits"]

        masked_index = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=False).squeeze(-1)
        # Fill mask pipeline supports only one ${mask_token} per sample

        logits = outputs[0, masked_index, :] / 1e3
        probs = logits.softmax(dim=-1)
        if target_ids is not None:
            probs = probs[..., target_ids]

        values, predictions = probs.topk(top_k)

        result = []
        single_mask = values.shape[0] == 1
        for i, (_values, _predictions) in enumerate(zip(values.tolist(), predictions.tolist())):
            row = []
            for v, p in zip(_values, _predictions):
                # Copy is important since we're going to modify this array in place
                tokens = input_ids.numpy().copy()
                if target_ids is not None:
                    p = target_ids[p].tolist()

                tokens[masked_index[i]] = p
                # Filter padding out:
                tokens = tokens[np.where(tokens != self.tokenizer.pad_token_id)]
                # Originally we skip special tokens to give readable output.
                # For multi masks though, the other [MASK] would be removed otherwise
                # making the output look odd, so we add them back
                sequence = self.tokenizer.decode(tokens, skip_special_tokens=single_mask)
                proposition = {"score": v, "token": p, "token_str": self.tokenizer.decode([p]), "sequence": sequence}
                row.append(proposition)
            result.append(row)
        if single_mask:
            return result[0]
        return result


PIPELINE_REGISTRY.register_pipeline(
    "temp-scale",
    pipeline_class=TempScalePipe,
    pt_model=AutoModelForMaskedLM,
)


def unmask(text):
    # text = add_mask(text)
    res = unmasker(text)
    out = {item["token_str"]: item["score"] for item in res}
    return out



textbox = gr.Textbox(label="Type language here", lines=5)
# import gradio as gr
from transformers import pipeline, Pipeline


# unmasker = pipeline("fill-mask", model="anferico/bert-for-patents")
#
#

#
#
# def unmask(text):
#     text = add_mask(text)
#     res = unmasker(text)
#     out = {item["token_str"]: item["score"] for item in res}
#     return out
#
#
# textbox = gr.Textbox(label="Type language here", lines=5)
#
demo = gr.Interface(
    fn=unmask,
    inputs=textbox,
    outputs="label",
    examples=[example],
)

demo.launch()