Spaces:
Build error
Build error
import gradio as gr | |
import numpy as np | |
from transformers import pipeline, Pipeline | |
unmasker = pipeline("fill-mask", model="anferico/bert-for-patents") | |
example = 'A crustless sandwich made from two slices of baked bread' | |
# def add_mask(text, size=1): | |
# split_text = text.split() | |
# idx = np.random.randint(len(split_text), size=size) | |
# for i in idx: | |
# split_text[i] = '[MASK]' | |
# return ' '.join(split_text) | |
# class TempScalePipe(Pipeline): | |
# def _forward(self, model_inputs): | |
# outputs = self.model(**model_inputs) | |
# return outputs | |
# | |
# def postprocess(self, model_outputs, temp=1e3): | |
# out = model_outputs["logits"] / temp | |
# idx = np.random.randint(-3, 0) | |
# best_class = out.softmax(idx) | |
# return best_class | |
# | |
def unmask(text): | |
# text = add_mask(text) | |
res = unmasker(text) | |
out = {item["token_str"]: item["score"] for item in res} | |
return out | |
textbox = gr.Textbox(label="Type language here", lines=5) | |
# import gradio as gr | |
from transformers import pipeline, Pipeline | |
# unmasker = pipeline("fill-mask", model="anferico/bert-for-patents") | |
# | |
# | |
# | |
# | |
# def unmask(text): | |
# text = add_mask(text) | |
# res = unmasker(text) | |
# out = {item["token_str"]: item["score"] for item in res} | |
# return out | |
# | |
# | |
# textbox = gr.Textbox(label="Type language here", lines=5) | |
# | |
demo = gr.Interface( | |
fn=unmask, | |
inputs=textbox, | |
outputs="label", | |
examples=[example], | |
) | |
demo.launch() | |