import gradio as gr import numpy as np import torch from transformers import pipeline from transformers.pipelines import PIPELINE_REGISTRY, FillMaskPipeline from transformers import AutoModelForMaskedLM # unmasker = pipeline("temp-scale", model="anferico/bert-for-patents") examples = [['A crustless [MASK] made from two slices of baked bread.', 1.2], ['The invention provides a method for altering or modifying [MASK] of one or more gene products.', 1.1], ['The graphite [MASK] is composed of a two-dimensional hexagonal lattice of carbon atoms.', 1.4]] def add_mask(text, size=1): split_text = text.split() # If the user supplies a mask, don't add more if '[MASK]' in split_text: return text idx = np.random.randint(len(split_text), size=size) for i in idx: split_text[i] = '[MASK]' return ' '.join(split_text) class TempScalePipe(FillMaskPipeline): def _sanitize_parameters(self, top_k=None, targets=None, temp=None): postprocess_params = {} if targets is not None: target_ids = self.get_target_ids(targets, top_k) postprocess_params["target_ids"] = target_ids if top_k is not None: postprocess_params["top_k"] = top_k if temp is not None: postprocess_params["temp"] = temp return {}, {}, postprocess_params def __call__(self, inputs, *args, **kwargs): """ Fill the masked token in the text(s) given as inputs. Args: args (`str` or `List[str]`): One or several texts (or one list of prompts) with masked tokens. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). top_k (`int`, *optional*): When passed, overrides the number of predictions to return. Return: A list or a list of list of `dict`: Each result comes as list of dictionaries with the following keys: - **sequence** (`str`) -- The corresponding input with the mask token prediction. - **score** (`float`) -- The corresponding probability. - **token** (`int`) -- The predicted token id (to replace the masked one). - **token** (`str`) -- The predicted token (to replace the masked one). """ outputs = super().__call__(inputs, **kwargs) if isinstance(inputs, list) and len(inputs) == 1: return outputs[0] return outputs def postprocess(self, model_outputs, top_k=10, target_ids=None, temp=1): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: top_k = target_ids.shape[0] input_ids = model_outputs["input_ids"][0] outputs = model_outputs["logits"] masked_index = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=False).squeeze(-1) # Fill mask pipeline supports only one ${mask_token} per sample logits = outputs[0, masked_index, :] / temp probs = logits.softmax(dim=-1) sampling = False if sampling: predictions = torch.multinomial(probs, num_samples=3) values = probs[0, predictions] if target_ids is not None: probs = probs[..., target_ids] if not sampling: values, predictions = probs.topk(top_k) result = [] single_mask = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist(), predictions.tolist())): row = [] for v, p in zip(_values, _predictions): # Copy is important since we're going to modify this array in place tokens = input_ids.numpy().copy() if target_ids is not None: p = target_ids[p].tolist() tokens[masked_index[i]] = p # Filter padding out: tokens = tokens[np.where(tokens != self.tokenizer.pad_token_id)] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back sequence = self.tokenizer.decode(tokens, skip_special_tokens=single_mask) proposition = {"score": v, "token": p, "token_str": self.tokenizer.decode([p]), "sequence": sequence} row.append(proposition) result.append(row) if single_mask: return result[0] return result PIPELINE_REGISTRY.register_pipeline( "temp-scale", pipeline_class=TempScalePipe, pt_model=AutoModelForMaskedLM, ) scrambler = pipeline("temp-scale", model="anferico/bert-for-patents") def unmask(text, temp, rounds): sampling = 'multi' for _ in range(rounds): text = add_mask(text, size=1) split_text = text.split() res = scrambler(text, temp=temp, top_k=10) mask_pos = [i for i, t in enumerate(split_text) if 'MASK' in t][0] out = {item["token_str"]: item["score"] for item in res} score_to_str = {out[k]:k for k in out.keys()} score_list = list(score_to_str.keys()) if sampling == 'multi': idx = np.argmax(np.random.multinomial(1, score_list, 1)) else: idx = np.random.randint(0, len(score_list)) score = score_list[idx] new_token = score_to_str[score] split_text[mask_pos] = new_token text = ' '.join(split_text) return text textbox = gr.Textbox(label="Type language here", lines=5) textbox2 = gr.Textbox(placeholder="", lines=4) temp_slider = gr.Slider(1.0, 2.0, value=1.0, label='Creativity') edit_slider = gr.Slider(1, 50, step=1, value=1.0, label='Number of edits') demo = gr.Interface( fn=unmask, inputs=[textbox, temp_slider, edit_slider], outputs=[textbox2], examples=examples, ) demo.launch()