import gradio as gr import numpy as np import torch from transformers import pipeline, Pipeline from transformers.pipelines import PIPELINE_REGISTRY, FillMaskPipeline from transformers import AutoConfig, AutoModel, AutoModelForMaskedLM unmasker = pipeline("fill-mask", model="anferico/bert-for-patents") # unmasker = pipeline("temp-scale", model="anferico/bert-for-patents") example = 'A crustless [MASK] made from two slices of baked bread' example_dict = {} example_dict['input_ids'] = example def add_mask(text, size=1): split_text = text.split() idx = np.random.randint(len(split_text), size=size) for i in idx: split_text[i] = '[MASK]' return ' '.join(split_text) class TempScalePipe(FillMaskPipeline): def postprocess(self, model_outputs, top_k=3, target_ids=None): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: top_k = target_ids.shape[0] input_ids = model_outputs["input_ids"][0] outputs = model_outputs["logits"] masked_index = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=False).squeeze(-1) # Fill mask pipeline supports only one ${mask_token} per sample logits = outputs[0, masked_index, :] / 1e1 probs = logits.softmax(dim=-1) indices = torch.multinomial(probs, num_samples=3) probs = probs[indices] if target_ids is not None: probs = probs[..., target_ids] values, predictions = probs.topk(top_k) result = [] single_mask = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist(), predictions.tolist())): row = [] for v, p in zip(_values, _predictions): # Copy is important since we're going to modify this array in place tokens = input_ids.numpy().copy() if target_ids is not None: p = target_ids[p].tolist() tokens[masked_index[i]] = p # Filter padding out: tokens = tokens[np.where(tokens != self.tokenizer.pad_token_id)] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back sequence = self.tokenizer.decode(tokens, skip_special_tokens=single_mask) proposition = {"score": v, "token": p, "token_str": self.tokenizer.decode([p]), "sequence": sequence} row.append(proposition) result.append(row) if single_mask: return result[0] return result PIPELINE_REGISTRY.register_pipeline( "temp-scale", pipeline_class=TempScalePipe, pt_model=AutoModelForMaskedLM, ) def unmask(text): # text = add_mask(text) res = unmasker(text) out = {item["token_str"]: item["score"] for item in res} return out textbox = gr.Textbox(label="Type language here", lines=5) # import gradio as gr from transformers import pipeline, Pipeline # unmasker = pipeline("fill-mask", model="anferico/bert-for-patents") # # # # # def unmask(text): # text = add_mask(text) # res = unmasker(text) # out = {item["token_str"]: item["score"] for item in res} # return out # # # textbox = gr.Textbox(label="Type language here", lines=5) # demo = gr.Interface( unmask, [gr.Slider(minimum=0, maximum=15, value=8, step=1, label="Guidance scale")], inputs=textbox, outputs="label", examples=[example], ) demo.launch()