import gradio as gr import numpy as np from transformers import pipeline, Pipeline unmasker = pipeline("fill-mask", model="anferico/bert-for-patents") example = 'A crustless sandwich made from two slices of baked bread' # class TempScalePipe(Pipeline): # def _forward(self, model_inputs): # outputs = self.model(**model_inputs) # return outputs # # def postprocess(self, model_outputs, temp=1e3): # out = model_outputs["logits"] / temp # idx = np.random.randint(-3, 0) # best_class = out.softmax(idx) # return best_class # def unmask(text): text = add_mask(text) res = unmasker(text) out = {item["token_str"]: item["score"] for item in res} return out textbox = gr.Textbox(label="Type language here", lines=5) import gradio as gr from transformers import pipeline, Pipeline # unmasker = pipeline("fill-mask", model="anferico/bert-for-patents") # # # def add_mask(text, size=1): # split_text = text.split() # idx = np.random.randint(len(split_text), size=size) # for i in idx: # split_text[i] = '[MASK]' # return ' '.join(split_text) # # # def unmask(text): # text = add_mask(text) # res = unmasker(text) # out = {item["token_str"]: item["score"] for item in res} # return out # # # textbox = gr.Textbox(label="Type language here", lines=5) # # demo = gr.Interface( # fn=unmask, # inputs=textbox, # outputs="label", # examples=[ # # ], # ) demo.launch() demo = gr.Interface( fn=unmask, inputs=textbox, outputs="label", examples=[ ], ) demo.launch()