Spaces:
Running
on
L40S
Running
on
L40S
# coding=utf-8 | |
# Copyright 2024 The Emu team, BAAI and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tokenization classes for Emu3.""" | |
import base64 | |
import logging | |
import os | |
import unicodedata | |
from typing import Collection, Dict, List, Optional, Set, Tuple, Union | |
import tiktoken | |
from transformers import PreTrainedTokenizer, AddedToken | |
logger = logging.getLogger(__name__) | |
VOCAB_FILES_NAMES = { | |
"vocab_file": "emu3.tiktoken", | |
"special_tokens_file": "emu3_vision_tokens.txt", | |
} | |
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+""" | |
ENDOFTEXT = "<|endoftext|>" | |
IMSTART = "<|im_start|>" | |
IMEND = "<|im_end|>" | |
# as the default behavior is changed to allow special tokens in | |
# regular texts, the surface forms of special tokens need to be | |
# as different as possible to minimize the impact | |
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205))) | |
# changed to use actual index to avoid misconfiguration with vocabulary expansion | |
SPECIAL_START_ID = 151643 | |
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]: | |
with open(tiktoken_bpe_file, "rb") as f: | |
contents = f.read() | |
return { | |
base64.b64decode(token): int(rank) | |
for token, rank in (line.split() for line in contents.splitlines() if line) | |
} | |
class Emu3Tokenizer(PreTrainedTokenizer): | |
"""Emu3 tokenizer.""" | |
vocab_files_names = VOCAB_FILES_NAMES | |
def __init__( | |
self, | |
vocab_file, | |
special_tokens_file, | |
errors="replace", | |
bos_token = "<|extra_203|>", | |
eos_token = "<|extra_204|>", | |
pad_token = "<|endoftext|>", | |
img_token = "<|image token|>", | |
boi_token = "<|image start|>", | |
eoi_token = "<|image end|>", | |
eol_token = "<|extra_200|>", | |
eof_token = "<|extra_201|>", | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
# how to handle errors in decoding UTF-8 byte sequences | |
# use ignore if you are in streaming inference | |
self.errors = errors | |
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) | |
vision_tokens = [t.strip() for t in open(special_tokens_file).readlines() if len(t.strip()) > 0] | |
SPECIAL_TOKENS = tuple( | |
enumerate( | |
( | |
( | |
ENDOFTEXT, | |
IMSTART, | |
IMEND, | |
) | |
+ EXTRAS | |
+ tuple(vision_tokens) | |
), | |
start=SPECIAL_START_ID, | |
) | |
) | |
self.special_tokens = {token: index for index, token in SPECIAL_TOKENS} | |
self.special_tokens_set = set(t for _, t in SPECIAL_TOKENS) | |
enc = tiktoken.Encoding( | |
"Emu3", | |
pat_str=PAT_STR, | |
mergeable_ranks=self.mergeable_ranks, | |
special_tokens=self.special_tokens, | |
) | |
assert ( | |
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab | |
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding" | |
self.decoder = { | |
v: k for k, v in self.mergeable_ranks.items() | |
} | |
self.decoder.update({v: k for k, v in self.special_tokens.items()}) | |
self.tokenizer = enc | |
self.eod_id = self.tokenizer.eot_token | |
self.bos_token = bos_token | |
self.eos_token = eos_token | |
self.pad_token = pad_token | |
self.img_token = img_token | |
self.boi_token = boi_token | |
self.eoi_token = eoi_token | |
self.eol_token = eol_token | |
self.eof_token = eof_token | |
def __getstate__(self): | |
# for pickle lovers | |
state = self.__dict__.copy() | |
del state["tokenizer"] | |
return state | |
def __setstate__(self, state): | |
# tokenizer is not python native; don't pass it; rebuild it | |
self.__dict__.update(state) | |
enc = tiktoken.Encoding( | |
"Emu3", | |
pat_str=PAT_STR, | |
mergeable_ranks=self.mergeable_ranks, | |
special_tokens=self.special_tokens, | |
) | |
self.tokenizer = enc | |
def __len__(self) -> int: | |
return self.tokenizer.n_vocab | |
def get_vocab(self) -> Dict[bytes, int]: | |
return self.mergeable_ranks | |
def convert_tokens_to_ids( | |
self, tokens: Union[bytes, str, List[Union[bytes, str]]] | |
) -> List[int]: | |
if isinstance(tokens, (str, bytes)): | |
if tokens in self.special_tokens: | |
return self.special_tokens[tokens] | |
else: | |
return self.mergeable_ranks.get(tokens) | |
ids = [] | |
for token in tokens: | |
if token in self.special_tokens: | |
ids.append(self.special_tokens[token]) | |
else: | |
ids.append(self.mergeable_ranks.get(token)) | |
return ids | |
def _add_tokens( | |
self, | |
new_tokens: Union[List[str], List[AddedToken]], | |
special_tokens: bool = False, | |
) -> int: | |
if not special_tokens and new_tokens: | |
raise ValueError("Adding regular tokens is not supported") | |
for token in new_tokens: | |
surface_form = token.content if isinstance(token, AddedToken) else token | |
if surface_form not in self.special_tokens_set: | |
raise ValueError("Adding unknown special tokens is not supported") | |
return 0 | |
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]: | |
""" | |
Save only the vocabulary of the tokenizer (vocabulary). | |
Returns: | |
`Tuple(str)`: Paths to the files saved. | |
""" | |
regular_file_path = os.path.join(save_directory, self.vocab_files_names["vocab_file"]) | |
with open(regular_file_path,'w', encoding="utf8") as w: | |
for k, v in self.mergeable_ranks.items(): | |
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n" | |
w.write(line) | |
excluded_special_tokens = set((ENDOFTEXT, IMSTART, IMEND,) + EXTRAS) | |
special_file_path = os.path.join(save_directory, self.vocab_files_names["special_tokens_file"]) | |
with open(special_file_path, 'w', encoding="utf8") as w: | |
for k in self.special_tokens: | |
if k not in excluded_special_tokens: | |
print(k, file=w) | |
return (regular_file_path, special_file_path) | |
def tokenize( | |
self, | |
text: str, | |
allowed_special: Union[Set, str] = "all", | |
disallowed_special: Union[Collection, str] = (), | |
**kwargs, | |
) -> List[Union[bytes, str]]: | |
""" | |
Converts a string in a sequence of tokens. | |
Args: | |
text (`str`): | |
The sequence to be encoded. | |
allowed_special (`Literal["all"]` or `set`): | |
The surface forms of the tokens to be encoded as special tokens in regular texts. | |
Default to "all". | |
disallowed_special (`Literal["all"]` or `Collection`): | |
The surface forms of the tokens that should not be in regular texts and trigger errors. | |
Default to an empty tuple. | |
kwargs (additional keyword arguments, *optional*): | |
Will be passed to the underlying model specific encode method. | |
Returns: | |
`List[bytes|str]`: The list of tokens. | |
""" | |
tokens = [] | |
text = unicodedata.normalize("NFC", text) | |
# this implementation takes a detour: text -> token id -> token surface forms | |
for t in self.tokenizer.encode( | |
text, allowed_special=allowed_special, disallowed_special=disallowed_special | |
): | |
tokens.append(self.decoder[t]) | |
return tokens | |
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str: | |
""" | |
Converts a sequence of tokens in a single string. | |
""" | |
text = "" | |
temp = b"" | |
for t in tokens: | |
if isinstance(t, str): | |
if temp: | |
text += temp.decode("utf-8", errors=self.errors) | |
temp = b"" | |
text += t | |
elif isinstance(t, bytes): | |
temp += t | |
else: | |
raise TypeError("token should only be of type types or str") | |
if temp: | |
text += temp.decode("utf-8", errors=self.errors) | |
return text | |
def vocab_size(self): | |
return self.tokenizer.n_vocab | |
def _convert_id_to_token(self, index: int) -> Union[bytes, str]: | |
"""Converts an id to a token, special tokens included""" | |
if index in self.decoder: | |
return self.decoder[index] | |
raise ValueError("unknown ids") | |
def _convert_token_to_id(self, token: Union[bytes, str]) -> int: | |
"""Converts a token to an id using the vocab, special tokens included""" | |
if token in self.special_tokens: | |
return self.special_tokens[token] | |
if token in self.mergeable_ranks: | |
return self.mergeable_ranks[token] | |
raise ValueError("unknown token") | |
def _decode( | |
self, | |
token_ids: Union[int, List[int]], | |
skip_special_tokens: bool = False, | |
errors: Optional[str] = None, | |
**kwargs, | |
) -> str: | |
if isinstance(token_ids, int): | |
token_ids = [token_ids] | |
if skip_special_tokens: | |
token_ids = [i for i in token_ids if i < self.eod_id] | |
return self.tokenizer.decode(token_ids, errors=errors or self.errors) | |