Spaces:
Running
on
L40S
Running
on
L40S
from PIL import Image | |
import gradio as gr | |
from transformers import ( | |
AutoTokenizer, | |
AutoModelForCausalLM, | |
AutoImageProcessor, | |
AutoModel, | |
) | |
from transformers.generation.configuration_utils import GenerationConfig | |
from transformers.generation import ( | |
LogitsProcessorList, | |
PrefixConstrainedLogitsProcessor, | |
UnbatchedClassifierFreeGuidanceLogitsProcessor, | |
) | |
import torch | |
from emu3.mllm.processing_emu3 import Emu3Processor | |
import spaces | |
import subprocess | |
# Install flash attention, skipping CUDA build if necessary | |
subprocess.run( | |
"pip install flash-attn --no-build-isolation", | |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
shell=True, | |
) | |
# Model paths | |
EMU_GEN_HUB = "BAAI/Emu3-Gen" | |
EMU_CHAT_HUB = "BAAI/Emu3-Chat" | |
VQ_HUB = "BAAI/Emu3-VisionTokenizer" | |
# Prepare models and processors | |
# Emu3-Gen model and processor | |
gen_model = AutoModelForCausalLM.from_pretrained( | |
EMU_GEN_HUB, | |
device_map="cuda:0", | |
torch_dtype=torch.bfloat16, | |
attn_implementation="flash_attention_2", | |
trust_remote_code=True, | |
) | |
# Emu3-Chat model and processor | |
chat_model = AutoModelForCausalLM.from_pretrained( | |
EMU_CHAT_HUB, | |
device_map="cuda:0", | |
torch_dtype=torch.bfloat16, | |
attn_implementation="flash_attention_2", | |
trust_remote_code=True, | |
) | |
tokenizer = AutoTokenizer.from_pretrained(EMU_CHAT_HUB, trust_remote_code=True) | |
image_processor = AutoImageProcessor.from_pretrained( | |
VQ_HUB, trust_remote_code=True | |
) | |
image_tokenizer = AutoModel.from_pretrained( | |
VQ_HUB, device_map="cuda:0", trust_remote_code=True | |
).eval() | |
processor = Emu3Processor( | |
image_processor, image_tokenizer, tokenizer | |
) | |
def generate_image(prompt): | |
POSITIVE_PROMPT = " masterpiece, film grained, best quality." | |
NEGATIVE_PROMPT = ( | |
"lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, " | |
"fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, " | |
"signature, watermark, username, blurry." | |
) | |
classifier_free_guidance = 3.0 | |
full_prompt = prompt + POSITIVE_PROMPT | |
kwargs = dict( | |
mode="G", | |
ratio="1:1", | |
image_area=gen_model.config.image_area, | |
return_tensors="pt", | |
) | |
pos_inputs = processor(text=full_prompt, **kwargs) | |
neg_inputs = processor(text=NEGATIVE_PROMPT, **kwargs) | |
# Prepare hyperparameters | |
GENERATION_CONFIG = GenerationConfig( | |
use_cache=True, | |
eos_token_id=gen_model.config.eos_token_id, | |
pad_token_id=gen_model.config.pad_token_id, | |
max_new_tokens=40960, | |
do_sample=True, | |
top_k=2048, | |
) | |
h, w = pos_inputs.image_size[0] | |
constrained_fn = processor.build_prefix_constrained_fn(h, w) | |
logits_processor = LogitsProcessorList( | |
[ | |
UnbatchedClassifierFreeGuidanceLogitsProcessor( | |
classifier_free_guidance, | |
gen_model, | |
unconditional_ids=neg_inputs.input_ids.to("cuda:0"), | |
), | |
PrefixConstrainedLogitsProcessor( | |
constrained_fn, | |
num_beams=1, | |
), | |
] | |
) | |
# Generate | |
outputs = gen_model.generate( | |
pos_inputs.input_ids.to("cuda:0"), | |
generation_config=GENERATION_CONFIG, | |
logits_processor=logits_processor, | |
) | |
mm_list = processor.decode(outputs[0]) | |
for idx, im in enumerate(mm_list): | |
if isinstance(im, Image.Image): | |
return im | |
return None | |
def vision_language_understanding(image, text): | |
inputs = processor( | |
text=text, | |
image=image, | |
mode="U", | |
padding_side="left", | |
padding="longest", | |
return_tensors="pt", | |
) | |
# Prepare hyperparameters | |
GENERATION_CONFIG = GenerationConfig( | |
pad_token_id=chat_tokenizer.pad_token_id, | |
bos_token_id=chat_tokenizer.bos_token_id, | |
eos_token_id=chat_tokenizer.eos_token_id, | |
max_new_tokens=320, | |
) | |
# Generate | |
outputs = chat_model.generate( | |
inputs.input_ids.to("cuda:0"), | |
generation_config=GENERATION_CONFIG, | |
max_new_tokens=320, | |
) | |
outputs = outputs[:, inputs.input_ids.shape[-1] :] | |
response = processor.batch_decode(outputs, skip_special_tokens=True)[0] | |
return response | |
def chat(history, user_input, user_image): | |
if user_image is not None: | |
# Use Emu3-Chat for vision-language understanding | |
response = vision_language_understanding(user_image, user_input) | |
# Append the user input and response to the history | |
history = history + [(user_input, response)] | |
else: | |
# Use Emu3-Gen for image generation | |
generated_image = generate_image(user_input) | |
if generated_image is not None: | |
# Append the user input and generated image to the history | |
history = history + [(user_input, generated_image)] | |
else: | |
# If image generation failed, respond with an error message | |
history = history + [ | |
(user_input, "Sorry, I could not generate an image.") | |
] | |
return history, history, gr.update(value=None) | |
def clear_input(): | |
return gr.update(value="") | |
with gr.Blocks() as demo: | |
gr.Markdown("# Emu3 Chatbot Demo") | |
gr.Markdown( | |
"This is a chatbot demo for image generation and vision-language understanding using Emu3 models." | |
) | |
chatbot = gr.Chatbot() | |
state = gr.State([]) | |
with gr.Row(): | |
with gr.Column(scale=0.85): | |
user_input = gr.Textbox( | |
show_label=False, placeholder="Type your message here...", lines=2 | |
).style(container=False) | |
with gr.Column(scale=0.15, min_width=0): | |
submit_btn = gr.Button("Send") | |
user_image = gr.Image( | |
source="upload", type="pil", label="Upload an image (optional)" | |
) | |
submit_btn.click( | |
chat, | |
inputs=[state, user_input, user_image], | |
outputs=[chatbot, state, user_image], | |
).then(fn=clear_input, inputs=[], outputs=user_input) | |
user_input.submit( | |
chat, | |
inputs=[state, user_input, user_image], | |
outputs=[chatbot, state, user_image], | |
).then(fn=clear_input, inputs=[], outputs=user_input) | |
demo.launch() | |