Spaces:
Running
on
L40S
Running
on
L40S
ryanzhangfan
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -17,24 +17,22 @@ from transformers.generation import (
|
|
17 |
)
|
18 |
import torch
|
19 |
from emu3.mllm.processing_emu3 import Emu3Processor
|
20 |
-
import spaces
|
21 |
|
22 |
import io
|
23 |
import base64
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def image2str(image):
|
26 |
buf = io.BytesIO()
|
27 |
image.save(buf, format="PNG")
|
28 |
i_str = base64.b64encode(buf.getvalue()).decode()
|
29 |
return f'<div style="float:left"><img src="data:image/png;base64, {i_str}"></div>'
|
30 |
|
31 |
-
# Install flash attention, skipping CUDA build if necessary
|
32 |
-
subprocess.run(
|
33 |
-
"pip install flash-attn --no-build-isolation",
|
34 |
-
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
35 |
-
shell=True,
|
36 |
-
)
|
37 |
-
|
38 |
print(gr.__version__)
|
39 |
|
40 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -46,7 +44,6 @@ VQ_HUB = "BAAI/Emu3-VisionTokenizer"
|
|
46 |
|
47 |
|
48 |
# uncomment to use gen model
|
49 |
-
"""
|
50 |
# Prepare models and processors
|
51 |
# Emu3-Gen model and processor
|
52 |
gen_model = AutoModelForCausalLM.from_pretrained(
|
@@ -55,7 +52,15 @@ gen_model = AutoModelForCausalLM.from_pretrained(
|
|
55 |
torch_dtype=torch.bfloat16,
|
56 |
attn_implementation="flash_attention_2",
|
57 |
trust_remote_code=True,
|
58 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
tokenizer = AutoTokenizer.from_pretrained(EMU_CHAT_HUB, trust_remote_code=True)
|
61 |
image_processor = AutoImageProcessor.from_pretrained(
|
@@ -66,14 +71,12 @@ image_tokenizer = AutoModel.from_pretrained(
|
|
66 |
).eval()
|
67 |
|
68 |
print(device)
|
69 |
-
gen_model.to(device)
|
70 |
image_tokenizer.to(device)
|
71 |
|
72 |
processor = Emu3Processor(
|
73 |
image_processor, image_tokenizer, tokenizer
|
74 |
)
|
75 |
|
76 |
-
@spaces.GPU(duration=300)
|
77 |
def generate_image(prompt):
|
78 |
POSITIVE_PROMPT = " masterpiece, film grained, best quality."
|
79 |
NEGATIVE_PROMPT = (
|
@@ -104,6 +107,9 @@ def generate_image(prompt):
|
|
104 |
top_k=2048,
|
105 |
)
|
106 |
|
|
|
|
|
|
|
107 |
h, w = pos_inputs.image_size[0]
|
108 |
constrained_fn = processor.build_prefix_constrained_fn(h, w)
|
109 |
logits_processor = LogitsProcessorList(
|
@@ -128,54 +134,17 @@ def generate_image(prompt):
|
|
128 |
)
|
129 |
|
130 |
mm_list = processor.decode(outputs[0])
|
|
|
131 |
for idx, im in enumerate(mm_list):
|
132 |
if isinstance(im, Image.Image):
|
133 |
-
|
134 |
-
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
# Use Emu3-Gen for image generation
|
141 |
-
generated_image = generate_image(user_input)
|
142 |
-
if generated_image is not None:
|
143 |
-
# Append the user input and generated image to the history
|
144 |
-
history = history + [(user_input, image2str(generated_image))]
|
145 |
-
else:
|
146 |
-
# If image generation failed, respond with an error message
|
147 |
-
history = history + [
|
148 |
-
(user_input, "Sorry, I could not generate an image.")
|
149 |
-
]
|
150 |
-
return history, history, gr.update(value=None)
|
151 |
-
"""
|
152 |
|
153 |
-
# Emu3-Chat model and processor
|
154 |
-
chat_model = AutoModelForCausalLM.from_pretrained(
|
155 |
-
EMU_CHAT_HUB,
|
156 |
-
device_map="cpu",
|
157 |
-
torch_dtype=torch.bfloat16,
|
158 |
-
attn_implementation="flash_attention_2",
|
159 |
-
trust_remote_code=True,
|
160 |
-
)
|
161 |
-
|
162 |
-
tokenizer = AutoTokenizer.from_pretrained(EMU_CHAT_HUB, trust_remote_code=True)
|
163 |
-
image_processor = AutoImageProcessor.from_pretrained(
|
164 |
-
VQ_HUB, trust_remote_code=True
|
165 |
-
)
|
166 |
-
image_tokenizer = AutoModel.from_pretrained(
|
167 |
-
VQ_HUB, device_map="cpu", trust_remote_code=True
|
168 |
-
).eval()
|
169 |
-
|
170 |
-
print(device)
|
171 |
-
chat_model.to(device)
|
172 |
-
image_tokenizer.to(device)
|
173 |
-
|
174 |
-
processor = Emu3Processor(
|
175 |
-
image_processor, image_tokenizer, tokenizer
|
176 |
-
)
|
177 |
-
|
178 |
-
@spaces.GPU
|
179 |
def vision_language_understanding(image, text):
|
180 |
inputs = processor(
|
181 |
text=text,
|
@@ -194,6 +163,9 @@ def vision_language_understanding(image, text):
|
|
194 |
max_new_tokens=320,
|
195 |
)
|
196 |
|
|
|
|
|
|
|
197 |
# Generate
|
198 |
outputs = chat_model.generate(
|
199 |
inputs.input_ids.to(device),
|
@@ -203,8 +175,13 @@ def vision_language_understanding(image, text):
|
|
203 |
|
204 |
outputs = outputs[:, inputs.input_ids.shape[-1] :]
|
205 |
response = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
|
|
|
|
|
|
|
|
206 |
return response
|
207 |
|
|
|
208 |
def chat(history, user_input, user_image):
|
209 |
if user_image is not None:
|
210 |
# Use Emu3-Chat for vision-language understanding
|
@@ -212,21 +189,32 @@ def chat(history, user_input, user_image):
|
|
212 |
# Append the user input and response to the history
|
213 |
history = history + [(image2str(user_image) + "<br>" + user_input, response)]
|
214 |
else:
|
215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
217 |
return history, history, gr.update(value=None)
|
218 |
|
219 |
-
|
220 |
-
# """
|
221 |
-
|
222 |
def clear_input():
|
223 |
return gr.update(value="")
|
224 |
|
|
|
225 |
with gr.Blocks() as demo:
|
226 |
gr.Markdown("# Emu3 Chatbot Demo")
|
227 |
gr.Markdown(
|
228 |
"This is a chatbot demo for image generation and vision-language understanding using Emu3 models."
|
229 |
)
|
|
|
|
|
|
|
230 |
|
231 |
chatbot = gr.Chatbot()
|
232 |
state = gr.State([])
|
|
|
17 |
)
|
18 |
import torch
|
19 |
from emu3.mllm.processing_emu3 import Emu3Processor
|
|
|
20 |
|
21 |
import io
|
22 |
import base64
|
23 |
|
24 |
+
subprocess.run(
|
25 |
+
"pip3 install flash-attn --no-build-isolation",
|
26 |
+
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
27 |
+
shell=True,
|
28 |
+
)
|
29 |
+
|
30 |
def image2str(image):
|
31 |
buf = io.BytesIO()
|
32 |
image.save(buf, format="PNG")
|
33 |
i_str = base64.b64encode(buf.getvalue()).decode()
|
34 |
return f'<div style="float:left"><img src="data:image/png;base64, {i_str}"></div>'
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
print(gr.__version__)
|
37 |
|
38 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
44 |
|
45 |
|
46 |
# uncomment to use gen model
|
|
|
47 |
# Prepare models and processors
|
48 |
# Emu3-Gen model and processor
|
49 |
gen_model = AutoModelForCausalLM.from_pretrained(
|
|
|
52 |
torch_dtype=torch.bfloat16,
|
53 |
attn_implementation="flash_attention_2",
|
54 |
trust_remote_code=True,
|
55 |
+
).eval()
|
56 |
+
|
57 |
+
chat_model = AutoModelForCausalLM.from_pretrained(
|
58 |
+
EMU_CHAT_HUB,
|
59 |
+
device_map="cpu",
|
60 |
+
torch_dtype=torch.bfloat16,
|
61 |
+
attn_implementation="flash_attention_2",
|
62 |
+
trust_remote_code=True,
|
63 |
+
).eval()
|
64 |
|
65 |
tokenizer = AutoTokenizer.from_pretrained(EMU_CHAT_HUB, trust_remote_code=True)
|
66 |
image_processor = AutoImageProcessor.from_pretrained(
|
|
|
71 |
).eval()
|
72 |
|
73 |
print(device)
|
|
|
74 |
image_tokenizer.to(device)
|
75 |
|
76 |
processor = Emu3Processor(
|
77 |
image_processor, image_tokenizer, tokenizer
|
78 |
)
|
79 |
|
|
|
80 |
def generate_image(prompt):
|
81 |
POSITIVE_PROMPT = " masterpiece, film grained, best quality."
|
82 |
NEGATIVE_PROMPT = (
|
|
|
107 |
top_k=2048,
|
108 |
)
|
109 |
|
110 |
+
torch.cuda.empty_cache()
|
111 |
+
gen_model.to(device)
|
112 |
+
|
113 |
h, w = pos_inputs.image_size[0]
|
114 |
constrained_fn = processor.build_prefix_constrained_fn(h, w)
|
115 |
logits_processor = LogitsProcessorList(
|
|
|
134 |
)
|
135 |
|
136 |
mm_list = processor.decode(outputs[0])
|
137 |
+
result = None
|
138 |
for idx, im in enumerate(mm_list):
|
139 |
if isinstance(im, Image.Image):
|
140 |
+
result = im
|
141 |
+
break
|
142 |
|
143 |
+
gen_model.cpu()
|
144 |
+
torch.cuda.empty_cache()
|
145 |
+
|
146 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
def vision_language_understanding(image, text):
|
149 |
inputs = processor(
|
150 |
text=text,
|
|
|
163 |
max_new_tokens=320,
|
164 |
)
|
165 |
|
166 |
+
torch.cuda.empty_cache()
|
167 |
+
chat_model.to(device)
|
168 |
+
|
169 |
# Generate
|
170 |
outputs = chat_model.generate(
|
171 |
inputs.input_ids.to(device),
|
|
|
175 |
|
176 |
outputs = outputs[:, inputs.input_ids.shape[-1] :]
|
177 |
response = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
178 |
+
|
179 |
+
chat_model.cpu()
|
180 |
+
torch.cuda.empty_cache()
|
181 |
+
|
182 |
return response
|
183 |
|
184 |
+
|
185 |
def chat(history, user_input, user_image):
|
186 |
if user_image is not None:
|
187 |
# Use Emu3-Chat for vision-language understanding
|
|
|
189 |
# Append the user input and response to the history
|
190 |
history = history + [(image2str(user_image) + "<br>" + user_input, response)]
|
191 |
else:
|
192 |
+
# Use Emu3-Gen for image generation
|
193 |
+
generated_image = generate_image(user_input)
|
194 |
+
if generated_image is not None:
|
195 |
+
# Append the user input and generated image to the history
|
196 |
+
history = history + [(user_input, image2str(generated_image))]
|
197 |
+
else:
|
198 |
+
# If image generation failed, respond with an error message
|
199 |
+
history = history + [
|
200 |
+
(user_input, "Sorry, I could not generate an image.")
|
201 |
+
]
|
202 |
|
203 |
return history, history, gr.update(value=None)
|
204 |
|
205 |
+
|
|
|
|
|
206 |
def clear_input():
|
207 |
return gr.update(value="")
|
208 |
|
209 |
+
|
210 |
with gr.Blocks() as demo:
|
211 |
gr.Markdown("# Emu3 Chatbot Demo")
|
212 |
gr.Markdown(
|
213 |
"This is a chatbot demo for image generation and vision-language understanding using Emu3 models."
|
214 |
)
|
215 |
+
gr.Markdown(
|
216 |
+
"Please pass only text input for image generation and both image and text for vision-language understanding"
|
217 |
+
)
|
218 |
|
219 |
chatbot = gr.Chatbot()
|
220 |
state = gr.State([])
|