PhyscalX commited on
Commit
ec9e514
·
1 Parent(s): 5d85da1

Ad model:nova-d48w1024-osp480

Browse files
Files changed (5) hide show
  1. .flake8 +21 -0
  2. .gitignore +55 -0
  3. README.md +5 -4
  4. app.py +184 -0
  5. requirements.txt +7 -0
.flake8 ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [flake8]
2
+ max-line-length = 100
3
+ ignore =
4
+ # whitespace before ':' (conflicted with Black)
5
+ E203,
6
+ # ambiguous variable name
7
+ E741,
8
+ # ‘from module import *’ used; unable to detect undefined names
9
+ F403,
10
+ # name may be undefined, or defined from star imports: module
11
+ F405,
12
+ # redefinition of unused name from line N
13
+ F811,
14
+ # undefined name
15
+ F821,
16
+ # line break before binary operator
17
+ W503,
18
+ # line break after binary operator
19
+ W504
20
+ # module imported but unused
21
+ per-file-ignores = __init__.py: F401
.gitignore ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Compiled Object files
2
+ *.slo
3
+ *.lo
4
+ *.o
5
+ *.cuo
6
+
7
+ # Compiled Dynamic libraries
8
+ *.so
9
+ *.dll
10
+ *.dylib
11
+
12
+ # Compiled Static libraries
13
+ *.lai
14
+ *.la
15
+ *.a
16
+ *.lib
17
+
18
+ # Compiled python
19
+ *.pyc
20
+ __pycache__
21
+
22
+ # Compiled MATLAB
23
+ *.mex*
24
+
25
+ # IPython notebook checkpoints
26
+ .ipynb_checkpoints
27
+
28
+ # Editor temporaries
29
+ *.swp
30
+ *~
31
+
32
+ # Sublime Text settings
33
+ *.sublime-workspace
34
+ *.sublime-project
35
+
36
+ # Eclipse Project settings
37
+ *.*project
38
+ .settings
39
+
40
+ # QtCreator files
41
+ *.user
42
+
43
+ # VSCode files
44
+ .vscode
45
+
46
+ # IDEA files
47
+ .idea
48
+
49
+ # OSX dir files
50
+ .DS_Store
51
+
52
+ # Android files
53
+ .gradle
54
+ *.iml
55
+ local.properties
README.md CHANGED
@@ -1,13 +1,14 @@
1
  ---
2
- title: Nova D48w1024 Osp480
3
- emoji: 💻
4
- colorFrom: green
5
- colorTo: green
6
  sdk: gradio
7
  sdk_version: 5.9.1
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
 
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: nova-d48w1024-osp480
3
+ emoji: 📉
4
+ colorFrom: purple
5
+ colorTo: gray
6
  sdk: gradio
7
  sdk_version: 5.9.1
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
11
+ short_description: 'NOVA Text-to-Video APP'
12
  ---
13
 
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024-present, BAAI. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ ##############################################################################
15
+ """NOVA T2V application."""
16
+
17
+ import argparse
18
+ import os
19
+
20
+ import gradio as gr
21
+ import numpy as np
22
+ import PIL.Image
23
+ import spaces
24
+ import torch
25
+
26
+ from diffnext.pipelines import NOVAPipeline
27
+ from diffnext.utils import export_to_video
28
+
29
+ # Fix tokenizer fork issue.
30
+ os.environ["TOKENIZERS_PARALLELISM"] = "true"
31
+ # Switch to the allocator optimized for dynamic shape.
32
+ os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
33
+
34
+
35
+ def parse_args():
36
+ """Parse arguments."""
37
+ parser = argparse.ArgumentParser(description="Serve NOVA T2V application")
38
+ parser.add_argument("--model", default="BAAI/nova-d48w1024-osp480", help="model path")
39
+ parser.add_argument("--device", type=int, default=0, help="device index")
40
+ parser.add_argument("--precision", default="float16", help="compute precision")
41
+ return parser.parse_args()
42
+
43
+
44
+ def crop_image(image, target_h, target_w):
45
+ """Center crop image to target size."""
46
+ h, w = image.height, image.width
47
+ aspect_ratio_target, aspect_ratio = target_w / target_h, w / h
48
+ if aspect_ratio > aspect_ratio_target:
49
+ new_w = int(h * aspect_ratio_target)
50
+ x_start = (w - new_w) // 2
51
+ image = image.crop((x_start, 0, x_start + new_w, h))
52
+ else:
53
+ new_h = int(w / aspect_ratio_target)
54
+ y_start = (h - new_h) // 2
55
+ image = image.crop((0, y_start, w, y_start + new_h))
56
+ return np.array(image.resize((target_w, target_h), PIL.Image.Resampling.BILINEAR))
57
+
58
+
59
+ @spaces.GPU(duration=75)
60
+ def generate_video(
61
+ prompt,
62
+ negative_prompt,
63
+ image_prompt,
64
+ motion_flow,
65
+ preset,
66
+ seed,
67
+ randomize_seed,
68
+ guidance_scale,
69
+ num_inference_steps,
70
+ num_diffusion_steps,
71
+ progress=gr.Progress(track_tqdm=True),
72
+ ):
73
+ """Generate a video."""
74
+ args = locals()
75
+ preset = [p for p in video_presets if p["label"] == preset][0]
76
+ args["max_latent_length"] = preset["#latents"]
77
+ args["image"] = crop_image(image_prompt, preset["h"], preset["w"]) if image_prompt else None
78
+ seed = np.random.randint(2147483647) if randomize_seed else seed
79
+ device = getattr(pipe, "_offload_device", pipe.device)
80
+ generator = torch.Generator(device=device).manual_seed(seed)
81
+ frames = pipe(generator=generator, **args).frames[0]
82
+ return export_to_video(frames, fps=12), seed
83
+
84
+
85
+ title = "Autoregressive Video Generation without Vector Quantization"
86
+ abbr = "<strong>NO</strong>n-quantized <strong>V</strong>ideo <strong>A</strong>utoregressive"
87
+ header = (
88
+ "<div align='center'>"
89
+ "<h2>Autoregressive Video Generation without Vector Quantization</h2>"
90
+ "<h3><a href='https://arxiv.org/abs/2412.14169' target='_blank' rel='noopener'>[paper]</a>"
91
+ "<a href='https://github.com/baaivision/NOVA' target='_blank' rel='noopener'>[code]</a></h3>"
92
+ "</div>"
93
+ )
94
+ header2 = f"<div align='center'><h3>🎞️ A {abbr} model for continuous visual generation</h3></div>"
95
+
96
+ video_presets = [
97
+ {"label": "33x768x480", "w": 768, "h": 480, "#latents": 9},
98
+ {"label": "17x768x480", "w": 768, "h": 480, "#latents": 5},
99
+ {"label": "1x768x480", "w": 768, "h": 480, "#latents": 1},
100
+ ]
101
+
102
+
103
+ prompts = [
104
+ "Niagara falls with colorful paint instead of water.",
105
+ "Many spotted jellyfish pulsating under water. Their bodies are transparent and glowing in deep ocean.", # noqa
106
+ "An intense close-up of a soldier’s face, covered in dirt and sweat, his eyes filled with determination as he surveys the battlefield.", # noqa
107
+ "a close-up shot of a woman standing in a dimly lit room. she is wearing a traditional chinese outfit, which includes a red and gold dress with intricate designs and a matching headpiece. the woman has her hair styled in an updo, adorned with a gold accessory. her makeup is done in a way that accentuates her features, with red lipstick and dark eyeshadow. she is looking directly at the camera with a neutral expression. the room has a rustic feel, with wooden beams and a stone wall visible in the background. the lighting in the room is soft and warm, creating a contrast with the woman's vibrant attire. there are no texts or other objects in the video. the style of the video is a portrait, focusing on the woman and her attire.", # noqa
108
+ "The camera slowly rotates around a massive stack of vintage televisions that are placed within a large New York museum gallery. Each of the televisions is showing a different program. There are 1950s sci-fi movies with their distinctive visuals, horror movies with their creepy scenes, news broadcasts with moving images and words, static on some screens, and a 1970s sitcom with its characteristic look. The televisions are of various sizes and designs, some with rounded edges and others with more angular shapes. The gallery is well-lit, with light falling on the stack of televisions and highlighting the different programs being shown. There are no people visible in the immediate vicinity, only the stack of televisions and the surrounding gallery space.", # noqa
109
+ ]
110
+ motion_flows = [5, 5, 5, 5, 5]
111
+ videos = ["", "", "", "", ""]
112
+ examples = [list(x) for x in zip(prompts, motion_flows)]
113
+
114
+
115
+ if __name__ == "__main__":
116
+ args = parse_args()
117
+
118
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu", args.device)
119
+ model_args = {"torch_dtype": getattr(torch, args.precision.lower()), "trust_remote_code": True}
120
+ pipe = NOVAPipeline.from_pretrained(args.model, **model_args).to(device)
121
+
122
+ # Application.
123
+ app = gr.Blocks(theme="origin").__enter__()
124
+ container = gr.Column(elem_id="col-container").__enter__()
125
+ _, main_row = gr.Markdown(header), gr.Row().__enter__()
126
+
127
+ # Input.
128
+ input_col = gr.Column().__enter__()
129
+ prompt = gr.Text(
130
+ label="Prompt",
131
+ placeholder="Describe the video you want to generate",
132
+ value="Niagara falls with colorful paint instead of water.",
133
+ lines=5,
134
+ )
135
+ negative_prompt = gr.Text(
136
+ label="Negative Prompt",
137
+ value="low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand, motion smear, motion artifacts", # noqa
138
+ lines=1,
139
+ )
140
+ image_prompt = gr.Image(label="Image Prompt (Optional) ", type="pil")
141
+ # fmt: off
142
+ adv_opt = gr.Accordion("Advanced Options", open=False).__enter__()
143
+ seed = gr.Slider(label="Seed", maximum=2147483647, step=1, value=0)
144
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
145
+ guidance_scale = gr.Slider(label="Guidance scale", minimum=1, maximum=10.0, step=0.1, value=7.0)
146
+ with gr.Row():
147
+ num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=128, step=1, value=128) # noqa
148
+ num_diffusion_steps = gr.Slider(label="Diffusion steps", minimum=1, maximum=100, step=1, value=100) # noqa
149
+ adv_opt.__exit__()
150
+ generate = gr.Button("Generate Video", variant="primary", size="lg")
151
+ input_col.__exit__()
152
+
153
+ # Results.
154
+ result_col, _ = gr.Column().__enter__(), gr.Markdown(header2)
155
+ preset = gr.Dropdown([p["label"] for p in video_presets], label="Video Preset", value=video_presets[0]["label"]) # noqa
156
+ motion_flow = gr.Slider(label="Motion Flow", minimum=1, maximum=10, step=1, value=5)
157
+ result = gr.Video(label="Result", show_label=False, autoplay=True)
158
+ result_col.__exit__(), main_row.__exit__()
159
+ # fmt: on
160
+
161
+ # Examples.
162
+ with gr.Row():
163
+ gr.Examples(examples=examples, inputs=[prompt, motion_flow])
164
+
165
+ # Events.
166
+ container.__exit__()
167
+ gr.on(
168
+ triggers=[generate.click, prompt.submit, negative_prompt.submit],
169
+ fn=generate_video,
170
+ inputs=[
171
+ prompt,
172
+ negative_prompt,
173
+ image_prompt,
174
+ motion_flow,
175
+ preset,
176
+ seed,
177
+ randomize_seed,
178
+ guidance_scale,
179
+ num_inference_steps,
180
+ num_diffusion_steps,
181
+ ],
182
+ outputs=[result, seed],
183
+ )
184
+ app.__exit__(), app.launch(share=False)
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ einops
2
+ torch
3
+ diffusers
4
+ transformers
5
+ accelerate
6
+ imageio[ffmpeg]
7
+ git+https://github.com/baaivision/NOVA.git