File size: 6,847 Bytes
bba9a09 5532968 e55087f bba9a09 271401b bba9a09 99a5fe6 4cc735e bba9a09 271401b bba9a09 6fee0c8 bba9a09 9c110ed c720148 9c110ed bba9a09 adbce02 bba9a09 a9e02c1 6f31b13 a9e02c1 6f31b13 aad2d68 bba9a09 f9d43be bba9a09 c54a297 bba9a09 c54a297 59acd4a ebed75c c54a297 dae9596 ebed75c aad2d68 bba9a09 b4be38b 6fee0c8 d352b55 bba9a09 99a5fe6 4cc735e bba9a09 271401b bba9a09 c54a297 bba9a09 c54a297 bba9a09 6fee0c8 bba9a09 6dd711b dae9596 6dd711b bba9a09 271401b bba9a09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import json
import os
from datetime import datetime, timezone
from huggingface_hub import snapshot_download
from src.submission.check_validity import get_model_tags
from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, DYNAMIC_INFO_PATH, DYNAMIC_INFO_FILE_PATH, DYNAMIC_INFO_REPO, TOKEN, QUEUE_REPO, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA
from src.submission.check_validity import (
already_submitted_models,
check_model_card,
get_model_size,
is_model_on_hub,
)
REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None
def add_new_eval(
model: str,
model_api_url: str,
model_api_key: str,
model_api_name: str,
base_model: str,
revision: str,
precision: str,
private: str,
weight_type: str,
model_type: str,
runsh,
adapter
):
global REQUESTED_MODELS
global USERS_TO_SUBMISSION_DATES
if not REQUESTED_MODELS:
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
precision = precision.split(" ")[0]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
if model_type is None:
model_type = ""
#return styled_error("Please select a model type.")
# Does the model actually exist?
if revision == "":
revision = "main"
architecture = "?"
downloads = 0
created_at = ""
# Is the model on the hub?
if len(model_api_url)==0:
#if weight_type in ["Delta", "Adapter"]:
# base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
# if not base_model_on_hub:
# return styled_error(f'Base model "{base_model}" {error}')
#if not weight_type == "Adapter":
# model_on_hub, error, model_config = is_model_on_hub(model_name=model, revision=revision, test_tokenizer=True)
# if not model_on_hub:
# return styled_error(f'Model "{model}" {error}')
# if model_config is not None:
# architectures = getattr(model_config, "architectures", None)
# if architectures:
# architecture = ";".join(architectures)
# downloads = getattr(model_config, 'downloads', 0)
# created_at = getattr(model_config, 'created_at', '')
#if not weight_type == "Adapter":
# model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
# if not model_on_hub:
# return styled_error(f'Model "{model}" {error}')
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=model, revision=revision)
except Exception:
return styled_error("Could not get your model information. Please fill it up properly.")
model_size = get_model_size(model_info=model_info, precision=precision)
# Were the model card and license filled?
try:
license = model_info.cardData["license"]
except Exception:
return styled_error("Please select a license for your model")
modelcard_OK, error_msg = check_model_card(model)
if not modelcard_OK:
return styled_error(error_msg)
#tags = get_model_tags(model_card, model)
# TODO: tags
tags = []
likes = model_info.likes
else:
model_size = 0
license = ""
likes = 0
tags = []
downloads = 0
# Seems good, creating the eval
print("Adding new eval", runsh)
max_size = 5 * 1024 * 1024 # 5MB
if (runsh is not None) and (adapter is not None):
if os.path.getsize(runsh.name) > max_size:
return "错误:文件大小不能超过 5MB!"
if os.path.getsize(adapter.name) > max_size:
return "错误:文件大小不能超过 5MB!"
with open(runsh.name, "r") as f:
runsh = f.read()
with open(adapter.name, "r") as f:
adapter = f.read()
else:
runsh = ""
adapter = ""
eval_entry = {
"model": model,
"model_api_url": model_api_url,
"model_api_key": model_api_key,
"model_api_name": model_api_name,
"base_model": base_model,
"revision": revision,
"precision": precision,
"private": private,
"weight_type": weight_type,
"status": "PENDING",
"submitted_time": current_time,
"model_type": model_type,
#"likes": model_info.likes,
"params": model_size,
#"license": license,
"private": False,
"runsh": runsh,
"adapter": adapter,
}
supplementary_info = {
"likes": 0,
"license": license,
"still_on_hub": True,
"tags": tags,
"downloads": downloads,
"created_at": created_at
}
# Check for duplicate submission
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
return styled_warning("This model has been already submitted.")
print("Creating eval file")
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
print("Uploading eval file")
API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("eval-queue/")[1],
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model} to eval queue",
)
# We want to grab the latest version of the submission file to not accidentally overwrite it
snapshot_download(
repo_id=DYNAMIC_INFO_REPO, local_dir=DYNAMIC_INFO_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
)
with open(DYNAMIC_INFO_FILE_PATH) as f:
all_supplementary_info = json.load(f)
all_supplementary_info[model] = supplementary_info
with open(DYNAMIC_INFO_FILE_PATH, "w") as f:
json.dump(all_supplementary_info, f, indent=2)
API.upload_file(
path_or_fileobj=DYNAMIC_INFO_FILE_PATH,
path_in_repo=DYNAMIC_INFO_FILE_PATH.split("/")[-1],
repo_id=DYNAMIC_INFO_REPO,
repo_type="dataset",
commit_message=f"Add {model} to dynamic info queue",
)
# Remove the local file
os.remove(out_path)
return styled_message(
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
)
|