File size: 6,847 Bytes
bba9a09
 
 
 
5532968
e55087f
bba9a09
271401b
bba9a09
 
 
 
 
 
 
 
 
 
 
 
99a5fe6
 
4cc735e
bba9a09
 
 
271401b
bba9a09
 
6fee0c8
 
bba9a09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c110ed
c720148
9c110ed
bba9a09
 
 
 
 
adbce02
 
 
bba9a09
a9e02c1
6f31b13
 
 
 
a9e02c1
6f31b13
 
 
 
 
 
 
 
 
 
aad2d68
 
 
 
bba9a09
f9d43be
 
 
 
 
 
bba9a09
c54a297
 
 
 
 
bba9a09
c54a297
 
 
59acd4a
 
 
ebed75c
c54a297
 
 
 
dae9596
ebed75c
aad2d68
bba9a09
 
b4be38b
6fee0c8
d352b55
 
 
 
 
 
 
 
 
 
 
 
bba9a09
 
99a5fe6
 
4cc735e
bba9a09
 
 
271401b
bba9a09
 
 
 
c54a297
bba9a09
c54a297
bba9a09
6fee0c8
 
bba9a09
 
6dd711b
dae9596
6dd711b
 
 
 
 
 
 
bba9a09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
271401b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bba9a09
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import json
import os
from datetime import datetime, timezone

from huggingface_hub import snapshot_download
from src.submission.check_validity import get_model_tags
from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, DYNAMIC_INFO_PATH, DYNAMIC_INFO_FILE_PATH, DYNAMIC_INFO_REPO, TOKEN, QUEUE_REPO, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA
from src.submission.check_validity import (
    already_submitted_models,
    check_model_card,
    get_model_size,
    is_model_on_hub,
)

REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None

def add_new_eval(
    model: str,
    model_api_url: str,
    model_api_key: str,
    model_api_name: str,
    base_model: str,
    revision: str,
    precision: str,
    private: str,
    weight_type: str,
    model_type: str,
    runsh,
    adapter
):
    global REQUESTED_MODELS
    global USERS_TO_SUBMISSION_DATES
    if not REQUESTED_MODELS:
        REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)

    user_name = ""
    model_path = model
    if "/" in model:
        user_name = model.split("/")[0]
        model_path = model.split("/")[1]

    precision = precision.split(" ")[0]
    current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")

    if model_type is None: 
        model_type = ""
        #return styled_error("Please select a model type.")

    # Does the model actually exist?
    if revision == "":
        revision = "main"

    architecture = "?"
    downloads = 0
    created_at = ""
    # Is the model on the hub?
    if len(model_api_url)==0:
        #if weight_type in ["Delta", "Adapter"]:
        #    base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
        #    if not base_model_on_hub:
        #        return styled_error(f'Base model "{base_model}" {error}')

        #if not weight_type == "Adapter":
        #    model_on_hub, error, model_config = is_model_on_hub(model_name=model, revision=revision, test_tokenizer=True)
        #    if not model_on_hub:
        #        return styled_error(f'Model "{model}" {error}')
        #    if model_config is not None:
        #        architectures = getattr(model_config, "architectures", None)
        #        if architectures:
        #            architecture = ";".join(architectures)
        #        downloads = getattr(model_config, 'downloads', 0)
        #        created_at = getattr(model_config, 'created_at', '')
        #if not weight_type == "Adapter":
        #    model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
        #    if not model_on_hub:
        #        return styled_error(f'Model "{model}" {error}')

        # Is the model info correctly filled?
        try:
            model_info = API.model_info(repo_id=model, revision=revision)
        except Exception:
            return styled_error("Could not get your model information. Please fill it up properly.")
        model_size = get_model_size(model_info=model_info, precision=precision)

        # Were the model card and license filled?
        try:
            license = model_info.cardData["license"]
        except Exception:
            return styled_error("Please select a license for your model")

        modelcard_OK, error_msg = check_model_card(model)
        if not modelcard_OK:
            return styled_error(error_msg)
        #tags = get_model_tags(model_card, model)
        # TODO: tags
        tags = []

        likes = model_info.likes
    else:
        model_size = 0
        license = ""
        likes = 0
        tags = []
        downloads = 0

    # Seems good, creating the eval
    print("Adding new eval", runsh)
    max_size = 5 * 1024 * 1024  # 5MB
    if (runsh is not None) and (adapter is not None):
        if os.path.getsize(runsh.name) > max_size:
            return "错误:文件大小不能超过 5MB!"
        if os.path.getsize(adapter.name) > max_size:
            return "错误:文件大小不能超过 5MB!"
        with open(runsh.name, "r") as f:
            runsh = f.read()
        with open(adapter.name, "r") as f:
            adapter = f.read()
    else:
        runsh = ""
        adapter = ""
    eval_entry = {
        "model": model,
        "model_api_url": model_api_url,
        "model_api_key": model_api_key,
        "model_api_name": model_api_name,
        "base_model": base_model,
        "revision": revision,
        "precision": precision,
        "private": private,
        "weight_type": weight_type,
        "status": "PENDING",
        "submitted_time": current_time,
        "model_type": model_type,
        #"likes": model_info.likes,
        "params": model_size,
        #"license": license,
        "private": False,
        "runsh": runsh,
        "adapter": adapter,
    }

    supplementary_info = {
        "likes": 0,
        "license": license,
        "still_on_hub": True,
        "tags": tags,
        "downloads": downloads,
        "created_at": created_at
    }

    # Check for duplicate submission
    if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
        return styled_warning("This model has been already submitted.")

    print("Creating eval file")
    OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
    os.makedirs(OUT_DIR, exist_ok=True)
    out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"

    with open(out_path, "w") as f:
        f.write(json.dumps(eval_entry))

    print("Uploading eval file")
    API.upload_file(
        path_or_fileobj=out_path,
        path_in_repo=out_path.split("eval-queue/")[1],
        repo_id=QUEUE_REPO,
        repo_type="dataset",
        commit_message=f"Add {model} to eval queue",
    )
  
    # We want to grab the latest version of the submission file to not accidentally overwrite it
    snapshot_download(
        repo_id=DYNAMIC_INFO_REPO, local_dir=DYNAMIC_INFO_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
    )

    with open(DYNAMIC_INFO_FILE_PATH) as f:
        all_supplementary_info = json.load(f)

    all_supplementary_info[model] = supplementary_info
    with open(DYNAMIC_INFO_FILE_PATH, "w") as f:
        json.dump(all_supplementary_info, f, indent=2)

    API.upload_file(
        path_or_fileobj=DYNAMIC_INFO_FILE_PATH,
        path_in_repo=DYNAMIC_INFO_FILE_PATH.split("/")[-1],
        repo_id=DYNAMIC_INFO_REPO,
        repo_type="dataset",
        commit_message=f"Add {model} to dynamic info queue",
    )

    # Remove the local file
    os.remove(out_path)

    return styled_message(
        "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
    )