File size: 9,624 Bytes
3d2142b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
825a49c
 
3d2142b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
825a49c
3d2142b
 
825a49c
 
3d2142b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
825a49c
3d2142b
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# Copyright (c) 2023-present, BAAI. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
"""Image encoder."""

import torch
from torch import nn

from tokenize_anything import layers


def space_to_depth(input, block_size):
    """Rearrange blocks of spatial data into depth."""
    if input.dim() == 3:
        hXw, c = input.size()[1:]
        h = w = int(hXw**0.5)
    else:
        h, w, c = input.size()[1:]
    h1, w1 = h // block_size, w // block_size
    c1 = (block_size**2) * c
    input = input.reshape((-1, h1, block_size, w1, block_size, c))
    return input.permute(0, 1, 3, 2, 4, 5).reshape((-1, h1, w1, c1))


def depth_to_space(input, block_size):
    """Rearrange blocks of depth data into spatial."""
    h1, w1, c1 = input.size()[1:]
    h, w = h1 * block_size, w1 * block_size
    c = c1 // (block_size**2)
    input = input.reshape((-1, h1, w1, block_size, block_size, c))
    return input.permute(0, 1, 3, 2, 4, 5).reshape((-1, h, w, c))


class MLP(nn.Module):
    """Two layers MLP."""

    def __init__(self, dim, mlp_ratio=4):
        super(MLP, self).__init__()
        self.fc1 = nn.Linear(dim, int(dim * mlp_ratio))
        self.fc2 = nn.Linear(int(dim * mlp_ratio), dim)
        self.activation = nn.GELU()

    def forward(self, x):
        return self.fc2(self.activation(self.fc1(x)))


class Attention(nn.Module):
    """Multihead attention."""

    def __init__(self, dim, num_heads, qkv_bias=True):
        super(Attention, self).__init__()
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = self.head_dim**-0.5
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.proj = nn.Linear(dim, dim)
        self.rel_pos_embed = nn.Identity()

    def forward(self, x):
        qkv_shape = (-1, x.size(1), 3, self.num_heads, self.head_dim)
        qkv = self.qkv(x).reshape(qkv_shape).permute(2, 0, 3, 1, 4)
        q, k, v = qkv.unbind(dim=0)
        attn = q @ k.transpose(-2, -1).mul(self.scale)
        attn = self.rel_pos_embed(attn)
        o = nn.functional.softmax(attn, dim=-1) @ v
        return self.proj(o.transpose(1, 2).flatten(2))


class Block(nn.Module):
    """Transformer block."""

    def __init__(self, dim, num_heads, mlp_ratio=4, qkv_bias=True):
        super(Block, self).__init__()
        self.norm1 = nn.LayerNorm(dim)
        self.attn = Attention(dim, num_heads, qkv_bias=qkv_bias)
        self.norm2 = nn.LayerNorm(dim)
        self.mlp = MLP(dim, mlp_ratio=mlp_ratio)
        self.drop_path = layers.DropPath(0.1, inplace=True)

    def forward(self, x):
        x = self.drop_path(self.attn(self.norm1(x))).add_(x)
        return self.drop_path(self.mlp(self.norm2(x))).add_(x)


class Bottleneck(nn.Module):
    """The bottleneck block."""

    def __init__(self, dim, expansion=2, width=None):
        super(Bottleneck, self).__init__()
        width = width or dim // expansion
        self.conv1 = nn.Conv2d(dim, width, 1, bias=False)
        self.norm1 = nn.SyncBatchNorm(width)
        self.conv2 = nn.Conv2d(width, width, 3, padding=1, bias=False)
        self.norm2 = nn.SyncBatchNorm(width)
        self.conv3 = nn.Conv2d(width, dim, 1, bias=False)
        self.norm3 = nn.SyncBatchNorm(dim)
        self.activation = nn.GELU()

    def forward(self, x):
        shortcut = x
        x = self.activation(self.norm1(self.conv1(x)))
        x = self.activation(self.norm2(self.conv2(x)))
        return self.norm3(self.conv3(x)).add_(shortcut)


class PatchEmbed(nn.Module):
    """Patch embedding layer."""

    def __init__(self, dim=768, patch_size=16, bias=True):
        super(PatchEmbed, self).__init__()
        self.proj = nn.Conv2d(3, dim, patch_size, patch_size, bias=bias)

    def forward(self, x):
        return self.proj(x).flatten(2).transpose(1, 2)


class PosEmbed(nn.Module):
    """Position embedding layer."""

    def __init__(self, dim, num_patches):
        super(PosEmbed, self).__init__()
        self.dim = dim
        self.num_patches = num_patches
        self.weight = nn.Parameter(torch.zeros(num_patches, dim))
        nn.init.normal_(self.weight, std=0.02)

    def forward(self, x):
        return x.add_(self.weight)


class RelPosEmbed(nn.Module):
    """Relative position embedding layer."""

    def __init__(self, num_heads, size):
        super(RelPosEmbed, self).__init__()
        self.register_buffer("index", self.get_index(size))
        self.weight = nn.Parameter(torch.zeros(num_heads, (2 * size - 1) ** 2))

    @staticmethod
    def get_index(size):
        """Return the relative index."""
        grid = torch.arange(size)
        grid = torch.stack(torch.meshgrid(grid, grid, indexing="ij")).reshape((2, -1))
        coords = grid[:, :, None] - grid[:, None, :] + (size - 1)
        coords[0] *= 2 * size - 1
        return coords.sum(0)

    def get_bias(self):
        return self.weight[:, self.index]

    def forward(self, x):
        return x.add_(self.get_bias())


class SimpleFeaturePyramid(nn.Module):
    """Module to create pyramid features."""

    def __init__(self, embed_dim, out_dim, patch_size=16, min_lvl=4, max_lvl=4):
        super(SimpleFeaturePyramid, self).__init__()
        self.min_lvl, self.max_lvl = min_lvl, max_lvl
        self.input_conv = nn.ModuleList()
        self.lateral_conv = nn.ModuleList()
        self.output_conv = nn.ModuleList()
        patch_lvl = dict((2**i, i) for i in range(6))[patch_size]
        for lvl in [min(i + 2, self.max_lvl) for i in range(4)]:
            if lvl == patch_lvl or lvl < self.min_lvl:
                self.input_conv += [nn.Identity()]
            elif lvl < patch_lvl:
                stride, layers = 2 ** (patch_lvl - lvl), []
                while stride > 1:
                    layers += [nn.ConvTranspose2d(embed_dim, embed_dim, 2, 2)]
                    layers += [nn.SyncBatchNorm(embed_dim), nn.GELU()] if stride > 2 else []
                    stride /= 2
                self.input_conv.append(nn.Sequential(*layers))
            elif lvl > patch_lvl:
                stride = 2 ** (lvl - patch_lvl)
                self.input_conv += [nn.MaxPool2d(stride, stride)]
        for _ in range(min_lvl, max_lvl + 1):
            self.lateral_conv.append(
                nn.Sequential(
                    nn.Conv2d(embed_dim, out_dim, kernel_size=1, bias=False),
                    nn.SyncBatchNorm(out_dim),
                )
            )
            self.output_conv.append(
                nn.Sequential(
                    nn.Conv2d(out_dim, out_dim, kernel_size=3, padding=1, bias=False),
                    nn.SyncBatchNorm(out_dim),
                )
            )

    def forward(self, inputs):
        inputs = inputs + [inputs[-1]] * (4 - len(inputs))
        inputs = [conv(x) for conv, x in zip(self.input_conv, inputs)]
        features = inputs[self.min_lvl - 1 : self.max_lvl]
        laterals = [conv(x) for conv, x in zip(self.lateral_conv, features)]
        return [conv(x) for conv, x in zip(self.output_conv, laterals)]


class ImageEncoderViT(nn.Module):
    """ViT image encoder."""

    def __init__(
        self,
        depth,
        embed_dim,
        num_heads,
        mlp_ratio=4,
        patch_size=16,
        window_size=16,
        image_size=1024,
        out_dim=256,
    ):
        super(ImageEncoderViT, self).__init__()
        self.embed_dim = embed_dim
        self.image_size = image_size
        self.window_size = window_size or image_size // patch_size
        self.patch_embed = PatchEmbed(embed_dim, patch_size)
        self.pos_embed = PosEmbed(embed_dim, (image_size // patch_size) ** 2)
        self.blocks = nn.ModuleList(Block(embed_dim, num_heads, mlp_ratio) for _ in range(depth))
        for blk in self.blocks:
            blk.attn.rel_pos_embed = RelPosEmbed(num_heads, self.window_size)
        self.norm = nn.LayerNorm(embed_dim)
        self.cross_conv = nn.ModuleList(Bottleneck(embed_dim) for _ in range(4))
        self.neck = SimpleFeaturePyramid(embed_dim, out_dim, patch_size)
        self.cross_indices = list(range(depth // 4 - 1, depth, depth // 4))

    def forward(self, x):
        x = self.patch_embed(x)
        x = self.pos_embed(x)
        x = space_to_depth(x, self.window_size)
        wmsa_shape = (-1,) + x.shape[1:]
        msa_shape = (-1, self.window_size**2, self.embed_dim)
        x = x.reshape(msa_shape)
        for i, blk in enumerate(self.blocks):
            x = blk(x)
            if i in self.cross_indices or i == len(self.blocks) - 1:
                x = self.norm(x) if i == len(self.blocks) - 1 else x
                x = depth_to_space(x.reshape(wmsa_shape), self.window_size)
                x = x.permute(0, 3, 1, 2).contiguous()
            if i in self.cross_indices:
                x = self.cross_conv[self.cross_indices.index(i)](x)
            if i in self.cross_indices and i < len(self.blocks) - 1:
                x = x.permute(0, 2, 3, 1)
                x = space_to_depth(x, self.window_size).reshape(msa_shape)
        return self.neck([x])