Spaces:
Runtime error
Runtime error
# Copyright 2022 Google LLC | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Optional, Union, Tuple, List, Callable, Dict | |
import torch | |
import torch.nn.functional as nnf | |
import numpy as np | |
import abc | |
from . import ptp_utils | |
from . import seq_aligner | |
from transformers import CLIPTextModel, CLIPTokenizer | |
pretrained_model_path = "checkpoints/CompVis/stable-diffusion-v1-4/" | |
ldm_stable = None | |
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer") | |
LOW_RESOURCE = False | |
NUM_DIFFUSION_STEPS = 50 | |
GUIDANCE_SCALE = 7.5 | |
MAX_NUM_WORDS = 77 | |
device = torch.device('cuda') | |
class LocalBlend: | |
def __call__(self, x_t, attention_store): | |
k = 1 | |
maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3] | |
maps = [item.reshape(self.alpha_layers.shape[0], -1, 1, 16, 16, MAX_NUM_WORDS) for item in maps] | |
maps = torch.cat(maps, dim=1) | |
maps = (maps * self.alpha_layers).sum(-1).mean(1) | |
mask = nnf.max_pool2d(maps, (k * 2 + 1, k * 2 +1), (1, 1), padding=(k, k)) | |
mask = nnf.interpolate(mask, size=(x_t.shape[2:])) | |
mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0] | |
mask = mask.gt(self.threshold) | |
mask = (mask[:1] + mask[1:]).float() | |
x_t = x_t[:1] + mask * (x_t - x_t[:1]) | |
return x_t | |
# def __init__(self, prompts: List[str], words: [List[List[str]]], threshold=.3): | |
def __init__(self, prompts: List[str], words: List[List[str]], threshold=.3): | |
alpha_layers = torch.zeros(len(prompts), 1, 1, 1, 1, MAX_NUM_WORDS) | |
for i, (prompt, words_) in enumerate(zip(prompts, words)): | |
if type(words_) is str: | |
words_ = [words_] | |
for word in words_: | |
ind = ptp_utils.get_word_inds(prompt, word, tokenizer) | |
alpha_layers[i, :, :, :, :, ind] = 1 | |
self.alpha_layers = alpha_layers.to(device) | |
self.threshold = threshold | |
class AttentionControl(abc.ABC): | |
def step_callback(self, x_t): | |
return x_t | |
def between_steps(self): | |
return | |
def num_uncond_att_layers(self): | |
return self.num_att_layers if LOW_RESOURCE else 0 | |
def forward (self, attn, is_cross: bool, place_in_unet: str): | |
raise NotImplementedError | |
def __call__(self, attn, is_cross: bool, place_in_unet: str): | |
if self.cur_att_layer >= self.num_uncond_att_layers: | |
if LOW_RESOURCE: | |
attn = self.forward(attn, is_cross, place_in_unet) | |
else: | |
h = attn.shape[0] | |
attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet) | |
self.cur_att_layer += 1 | |
if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers: | |
self.cur_att_layer = 0 | |
self.cur_step += 1 | |
self.between_steps() | |
return attn | |
def reset(self): | |
self.cur_step = 0 | |
self.cur_att_layer = 0 | |
def __init__(self): | |
self.cur_step = 0 | |
self.num_att_layers = -1 | |
self.cur_att_layer = 0 | |
class EmptyControl(AttentionControl): | |
def forward (self, attn, is_cross: bool, place_in_unet: str): | |
return attn | |
class AttentionStore(AttentionControl): | |
def get_empty_store(): | |
return {"down_cross": [], "mid_cross": [], "up_cross": [], | |
"down_self": [], "mid_self": [], "up_self": []} | |
def forward(self, attn, is_cross: bool, place_in_unet: str): | |
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}" | |
if attn.shape[1] <= 32 ** 2: # avoid memory overhead | |
self.step_store[key].append(attn) | |
return attn | |
def between_steps(self): | |
if len(self.attention_store) == 0: | |
self.attention_store = self.step_store | |
else: | |
for key in self.attention_store: | |
for i in range(len(self.attention_store[key])): | |
self.attention_store[key][i] += self.step_store[key][i] | |
self.step_store = self.get_empty_store() | |
def get_average_attention(self): | |
average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store} | |
return average_attention | |
def reset(self): | |
super(AttentionStore, self).reset() | |
self.step_store = self.get_empty_store() | |
self.attention_store = {} | |
def __init__(self): | |
super(AttentionStore, self).__init__() | |
self.step_store = self.get_empty_store() | |
self.attention_store = {} | |
class AttentionControlEdit(AttentionStore, abc.ABC): | |
def step_callback(self, x_t): | |
if self.local_blend is not None: | |
x_t = self.local_blend(x_t, self.attention_store) | |
return x_t | |
def replace_self_attention(self, attn_base, att_replace): | |
if att_replace.shape[2] <= 16 ** 2: | |
return attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape) | |
else: | |
return att_replace | |
def replace_cross_attention(self, attn_base, att_replace): | |
raise NotImplementedError | |
def forward(self, attn, is_cross: bool, place_in_unet: str): | |
super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet) | |
if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]): | |
h = attn.shape[0] // (self.batch_size) | |
attn = attn.reshape(self.batch_size, h, *attn.shape[1:]) | |
attn_base, attn_repalce = attn[0], attn[1:] | |
if is_cross: | |
alpha_words = self.cross_replace_alpha[self.cur_step] | |
attn_repalce_new = self.replace_cross_attention(attn_base, attn_repalce) * alpha_words + (1 - alpha_words) * attn_repalce | |
attn[1:] = attn_repalce_new | |
else: | |
attn[1:] = self.replace_self_attention(attn_base, attn_repalce) | |
attn = attn.reshape(self.batch_size * h, *attn.shape[2:]) | |
return attn | |
def __init__(self, prompts, num_steps: int, | |
cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]], | |
self_replace_steps: Union[float, Tuple[float, float]], | |
local_blend: Optional[LocalBlend]): | |
super(AttentionControlEdit, self).__init__() | |
self.batch_size = len(prompts) | |
self.cross_replace_alpha = ptp_utils.get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps, tokenizer).to(device) | |
if type(self_replace_steps) is float: | |
self_replace_steps = 0, self_replace_steps | |
self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1]) | |
self.local_blend = local_blend | |
class AttentionReplace(AttentionControlEdit): | |
def replace_cross_attention(self, attn_base, att_replace): | |
return torch.einsum('hpw,bwn->bhpn', attn_base, self.mapper) | |
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, | |
local_blend: Optional[LocalBlend] = None): | |
super(AttentionReplace, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend) | |
self.mapper = seq_aligner.get_replacement_mapper(prompts, tokenizer).to(device) | |
class AttentionRefine(AttentionControlEdit): | |
def replace_cross_attention(self, attn_base, att_replace): | |
attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3) | |
attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas) | |
return attn_replace | |
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, | |
local_blend: Optional[LocalBlend] = None): | |
super(AttentionRefine, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend) | |
self.mapper, alphas = seq_aligner.get_refinement_mapper(prompts, tokenizer) | |
self.mapper, alphas = self.mapper.to(device), alphas.to(device) | |
self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1]) | |
class AttentionReweight(AttentionControlEdit): | |
def replace_cross_attention(self, attn_base, att_replace): | |
if self.prev_controller is not None: | |
attn_base = self.prev_controller.replace_cross_attention(attn_base, att_replace) | |
attn_replace = attn_base[None, :, :, :] * self.equalizer[:, None, None, :] | |
return attn_replace | |
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, equalizer, | |
local_blend: Optional[LocalBlend] = None, controller: Optional[AttentionControlEdit] = None): | |
super(AttentionReweight, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend) | |
self.equalizer = equalizer.to(device) | |
self.prev_controller = controller | |
def get_equalizer(text: str, word_select: Union[int, Tuple[int, ...]], values: Union[List[float], | |
Tuple[float, ...]]): | |
if type(word_select) is int or type(word_select) is str: | |
word_select = (word_select,) | |
equalizer = torch.ones(len(values), 77) | |
values = torch.tensor(values, dtype=torch.float32) | |
for word in word_select: | |
inds = ptp_utils.get_word_inds(text, word, tokenizer) | |
equalizer[:, inds] = values | |
return equalizer | |