File size: 12,849 Bytes
2493822 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 2493822 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 2493822 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 2493822 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 2493822 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
# import plotly.graph_objects as go
# import textwrap
# import re
# from collections import defaultdict
# def generate_subplot(paraphrased_sentence, scheme_sentences, sampled_sentence, highlight_info):
# # Combine nodes into one list with appropriate labels
# nodes = [paraphrased_sentence] + scheme_sentences + sampled_sentence
# nodes[0] += ' L0' # Paraphrased sentence is level 0
# para_len = len(scheme_sentences)
# for i in range(1, para_len + 1):
# nodes[i] += ' L1' # Scheme sentences are level 1
# for i in range(para_len + 1, len(nodes)):
# nodes[i] += ' L2' # Sampled sentences are level 2
# # Define the highlight_words function
# def highlight_words(sentence, color_map):
# for word, color in color_map.items():
# sentence = re.sub(f"\\b{word}\\b", f"{{{{{word}}}}}", sentence, flags=re.IGNORECASE)
# return sentence
# # Clean and wrap nodes, and highlight specified words globally
# cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes]
# global_color_map = dict(highlight_info)
# highlighted_nodes = [highlight_words(node, global_color_map) for node in cleaned_nodes]
# wrapped_nodes = ['<br>'.join(textwrap.wrap(node, width=30)) for node in highlighted_nodes]
# # Function to determine tree levels and create edges dynamically
# def get_levels_and_edges(nodes):
# levels = {}
# edges = []
# for i, node in enumerate(nodes):
# level = int(node.split()[-1][1])
# levels[i] = level
# # Add edges from L0 to all L1 nodes
# root_node = next(i for i, level in levels.items() if level == 0)
# for i, level in levels.items():
# if level == 1:
# edges.append((root_node, i))
# # Add edges from each L1 node to their corresponding L2 nodes
# l1_indices = [i for i, level in levels.items() if level == 1]
# l2_indices = [i for i, level in levels.items() if level == 2]
# for i, l1_node in enumerate(l1_indices):
# l2_start = i * 4
# for j in range(4):
# l2_index = l2_start + j
# if l2_index < len(l2_indices):
# edges.append((l1_node, l2_indices[l2_index]))
# # Add edges from each L2 node to their corresponding L3 nodes
# l2_indices = [i for i, level in levels.items() if level == 2]
# l3_indices = [i for i, level in levels.items() if level == 3]
# l2_to_l3_map = {l2_node: [] for l2_node in l2_indices}
# # Map L3 nodes to L2 nodes
# for l3_node in l3_indices:
# l2_node = l3_node % len(l2_indices)
# l2_to_l3_map[l2_indices[l2_node]].append(l3_node)
# for l2_node, l3_nodes in l2_to_l3_map.items():
# for l3_node in l3_nodes:
# edges.append((l2_node, l3_node))
# return levels, edges
# # Get levels and dynamic edges
# levels, edges = get_levels_and_edges(nodes)
# max_level = max(levels.values(), default=0)
# # Calculate positions
# positions = {}
# level_heights = defaultdict(int)
# for node, level in levels.items():
# level_heights[level] += 1
# y_offsets = {level: - (height - 1) / 2 for level, height in level_heights.items()}
# x_gap = 2
# l1_y_gap = 10
# l2_y_gap = 6
# for node, level in levels.items():
# if level == 1:
# positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
# elif level == 2:
# positions[node] = (-level * x_gap, y_offsets[level] * l2_y_gap)
# else:
# positions[node] = (-level * x_gap, y_offsets[level] * l2_y_gap)
# y_offsets[level] += 1
# # Function to highlight words in a wrapped node string
# def color_highlighted_words(node, color_map):
# parts = re.split(r'(\{\{.*?\}\})', node)
# colored_parts = []
# for part in parts:
# match = re.match(r'\{\{(.*?)\}\}', part)
# if match:
# word = match.group(1)
# color = color_map.get(word, 'black')
# colored_parts.append(f"<span style='color: {color};'>{word}</span>")
# else:
# colored_parts.append(part)
# return ''.join(colored_parts)
# # Create figure
# fig = go.Figure()
# # Add nodes to the figure
# for i, node in enumerate(wrapped_nodes):
# colored_node = color_highlighted_words(node, global_color_map)
# x, y = positions[i]
# fig.add_trace(go.Scatter(
# x=[-x], # Reflect the x coordinate
# y=[y],
# mode='markers',
# marker=dict(size=10, color='blue'),
# hoverinfo='none'
# ))
# fig.add_annotation(
# x=-x, # Reflect the x coordinate
# y=y,
# text=colored_node,
# showarrow=False,
# xshift=15,
# align="center",
# font=dict(size=8),
# bordercolor='black',
# borderwidth=1,
# borderpad=2,
# bgcolor='white',
# width=150
# )
# # Add edges to the figure
# for edge in edges:
# x0, y0 = positions[edge[0]]
# x1, y1 = positions[edge[1]]
# fig.add_trace(go.Scatter(
# x=[-x0, -x1], # Reflect the x coordinates
# y=[y0, y1],
# mode='lines',
# line=dict(color='black', width=1)
# ))
# fig.update_layout(
# showlegend=False,
# margin=dict(t=20, b=20, l=20, r=20),
# xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
# yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
# width=1200, # Adjusted width to accommodate more levels
# height=1000 # Adjusted height to accommodate more levels
# )
# return fig
import plotly.graph_objects as go
import textwrap
import re
from collections import defaultdict
def generate_subplot(paraphrased_sentence, scheme_sentences, sampled_sentence, highlight_info):
# Combine nodes into one list with appropriate labels
nodes = [paraphrased_sentence] + scheme_sentences + sampled_sentence
nodes[0] += ' L0' # Paraphrased sentence is level 0
para_len = len(scheme_sentences)
for i in range(1, para_len + 1):
nodes[i] += ' L1' # Scheme sentences are level 1
for i in range(para_len + 1, len(nodes)):
nodes[i] += ' L2' # Sampled sentences are level 2
# Define the highlight_words function
def highlight_words(sentence, color_map):
for word, color in color_map.items():
sentence = re.sub(f"\\b{word}\\b", f"{{{{{word}}}}}", sentence, flags=re.IGNORECASE)
return sentence
# Clean and wrap nodes, and highlight specified words globally
cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes]
global_color_map = dict(highlight_info)
highlighted_nodes = [highlight_words(node, global_color_map) for node in cleaned_nodes]
wrapped_nodes = ['<br>'.join(textwrap.wrap(node, width=30)) for node in highlighted_nodes]
# Function to determine tree levels and create edges dynamically
def get_levels_and_edges(nodes):
levels = {}
edges = []
for i, node in enumerate(nodes):
level = int(node.split()[-1][1])
levels[i] = level
# Add edges from L0 to all L1 nodes
root_node = next(i for i, level in levels.items() if level == 0)
for i, level in levels.items():
if level == 1:
edges.append((root_node, i))
# Add edges from each L1 node to their corresponding L2 nodes
l1_indices = [i for i, level in levels.items() if level == 1]
l2_indices = [i for i, level in levels.items() if level == 2]
for i, l1_node in enumerate(l1_indices):
l2_start = i * 4
for j in range(4):
l2_index = l2_start + j
if l2_index < len(l2_indices):
edges.append((l1_node, l2_indices[l2_index]))
# Add edges from each L2 node to their corresponding L3 nodes
l2_indices = [i for i, level in levels.items() if level == 2]
l3_indices = [i for i, level in levels.items() if level == 3]
l2_to_l3_map = {l2_node: [] for l2_node in l2_indices}
# Map L3 nodes to L2 nodes
for l3_node in l3_indices:
l2_node = l3_node % len(l2_indices)
l2_to_l3_map[l2_indices[l2_node]].append(l3_node)
for l2_node, l3_nodes in l2_to_l3_map.items():
for l3_node in l3_nodes:
edges.append((l2_node, l3_node))
return levels, edges
# Get levels and dynamic edges
levels, edges = get_levels_and_edges(nodes)
max_level = max(levels.values(), default=0)
# Calculate positions
positions = {}
level_heights = defaultdict(int)
for node, level in levels.items():
level_heights[level] += 1
y_offsets = {level: - (height - 1) / 2 for level, height in level_heights.items()}
x_gap = 2
l1_y_gap = 10
l2_y_gap = 6
for node, level in levels.items():
if level == 1:
positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
elif level == 2:
positions[node] = (-level * x_gap, y_offsets[level] * l2_y_gap)
else:
positions[node] = (-level * x_gap, y_offsets[level] * l2_y_gap)
y_offsets[level] += 1
# Function to highlight words in a wrapped node string
def color_highlighted_words(node, color_map):
parts = re.split(r'(\{\{.*?\}\})', node)
colored_parts = []
for part in parts:
match = re.match(r'\{\{(.*?)\}\}', part)
if match:
word = match.group(1)
color = color_map.get(word, 'black')
colored_parts.append(f"<span style='color: {color};'>{word}</span>")
else:
colored_parts.append(part)
return ''.join(colored_parts)
# Define the text for each edge
edge_texts = [
"Highest Entropy Masking",
"Pseudo-random Masking",
"Random Masking",
"Greedy Sampling",
"Temperature Sampling",
"Exponential Minimum Sampling",
"Inverse Transform Sampling",
"Greedy Sampling",
"Temperature Sampling",
"Exponential Minimum Sampling",
"Inverse Transform Sampling",
"Greedy Sampling",
"Temperature Sampling",
"Exponential Minimum Sampling",
"Inverse Transform Sampling"
]
# Create figure
fig = go.Figure()
# Add nodes to the figure
for i, node in enumerate(wrapped_nodes):
colored_node = color_highlighted_words(node, global_color_map)
x, y = positions[i]
fig.add_trace(go.Scatter(
x=[-x], # Reflect the x coordinate
y=[y],
mode='markers',
marker=dict(size=10, color='blue'),
hoverinfo='none'
))
fig.add_annotation(
x=-x, # Reflect the x coordinate
y=y,
text=colored_node,
showarrow=False,
xshift=15,
align="center",
font=dict(size=8),
bordercolor='black',
borderwidth=1,
borderpad=2,
bgcolor='white',
width=150
)
# Add edges and text above each edge
for i, edge in enumerate(edges):
x0, y0 = positions[edge[0]]
x1, y1 = positions[edge[1]]
fig.add_trace(go.Scatter(
x=[-x0, -x1], # Reflect the x coordinates
y=[y0, y1],
mode='lines',
line=dict(color='black', width=1)
))
# Calculate the midpoint of the edge
mid_x = (-x0 + -x1) / 2
mid_y = (y0 + y1) / 2
# Adjust y position to shift text upwards
text_y_position = mid_y + 0.8 # Increase this value to shift the text further upwards
# Add text annotation above the edge
fig.add_annotation(
x=mid_x,
y=text_y_position,
text=edge_texts[i], # Use the text specific to this edge
showarrow=False,
font=dict(size=10),
align="center"
)
fig.update_layout(
showlegend=False,
margin=dict(t=20, b=20, l=20, r=20),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
width=1200, # Adjusted width to accommodate more levels
height=1000 # Adjusted height to accommodate more levels
)
return fig
|