Spaces:
Build error
Build error
File size: 10,535 Bytes
ea7f5b6 6f7ac1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
from transformers import AutoTokenizer
from transformers import AutoModelForSeq2SeqLM
import plotly.graph_objs as go
import textwrap
from transformers import pipeline
import re
import time
import requests
from PIL import Image
import itertools
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
from matplotlib.colors import ListedColormap, rgb2hex
import ipywidgets as widgets
from IPython.display import display, HTML
import pandas as pd
from pprint import pprint
from tenacity import retry
from tqdm import tqdm
import scipy.stats
import torch
from transformers import GPT2LMHeadModel
import seaborn as sns
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForMaskedLM
import random
from nltk.corpus import stopwords
from termcolor import colored
import nltk
from nltk.translate.bleu_score import sentence_bleu
from transformers import BertTokenizer, BertModel
import graphviz
import gradio as gr
from tree import generate_plot
from paraphraser import generate_paraphrase
nltk.download('stopwords')
# Function to Find the Longest Common Substring Words Subsequence
def longest_common_subss(original_sentence, paraphrased_sentences):
stop_words = set(stopwords.words('english'))
original_sentence_lower = original_sentence.lower()
paraphrased_sentences_lower = [s.lower() for s in paraphrased_sentences]
paraphrased_sentences_no_stopwords = []
for sentence in paraphrased_sentences_lower:
words = re.findall(r'\b\w+\b', sentence)
filtered_sentence = ' '.join([word for word in words if word not in stop_words])
paraphrased_sentences_no_stopwords.append(filtered_sentence)
results = []
for sentence in paraphrased_sentences_no_stopwords:
common_words = set(original_sentence_lower.split()) & set(sentence.split())
for word in common_words:
sentence = sentence.replace(word, colored(word, 'green'))
results.append({
"Original Sentence": original_sentence_lower,
"Paraphrased Sentence": sentence,
"Substrings Word Pair": common_words
})
return results
# Function to Find Common Substring Word between each paraphrase sentences
def common_substring_word(original_sentence, paraphrased_sentences):
stop_words = set(stopwords.words('english'))
original_sentence_lower = original_sentence.lower()
paraphrased_sentences_lower = [s.lower() for s in paraphrased_sentences]
paraphrased_sentences_no_stopwords = []
for sentence in paraphrased_sentences_lower:
words = re.findall(r'\b\w+\b', sentence)
filtered_sentence = ' '.join([word for word in words if word not in stop_words])
paraphrased_sentences_no_stopwords.append(filtered_sentence)
results = []
for idx, sentence in enumerate(paraphrased_sentences_no_stopwords):
common_words = set(original_sentence_lower.split()) & set(sentence.split())
common_substrings = ', '.join(sorted(common_words))
for word in common_words:
sentence = sentence.replace(word, colored(word, 'green'))
results.append({
f"Paraphrased Sentence {idx+1}": sentence,
"Common Substrings": common_substrings
})
return results
import re
from nltk.corpus import stopwords
def find_common_subsequences(sentence, str_list):
stop_words = set(stopwords.words('english'))
sentence = sentence.lower()
str_list = [s.lower() for s in str_list]
def is_present(lcs, str_list):
for string in str_list:
if lcs not in string:
return False
return True
def remove_stop_words_and_special_chars(sentence):
sentence = re.sub(r'[^\w\s]', '', sentence)
words = sentence.split()
filtered_words = [word for word in words if word.lower() not in stop_words]
return " ".join(filtered_words)
sentence = remove_stop_words_and_special_chars(sentence)
str_list = [remove_stop_words_and_special_chars(s) for s in str_list]
words = sentence.split(" ")
common_grams = []
added_phrases = set()
def is_covered(subseq, added_phrases):
for phrase in added_phrases:
if subseq in phrase:
return True
return False
for i in range(len(words) - 4):
penta = " ".join(words[i:i+5])
if is_present(penta, str_list):
common_grams.append(penta)
added_phrases.add(penta)
for i in range(len(words) - 3):
quad = " ".join(words[i:i+4])
if is_present(quad, str_list) and not is_covered(quad, added_phrases):
common_grams.append(quad)
added_phrases.add(quad)
for i in range(len(words) - 2):
tri = " ".join(words[i:i+3])
if is_present(tri, str_list) and not is_covered(tri, added_phrases):
common_grams.append(tri)
added_phrases.add(tri)
for i in range(len(words) - 1):
bi = " ".join(words[i:i+2])
if is_present(bi, str_list) and not is_covered(bi, added_phrases):
common_grams.append(bi)
added_phrases.add(bi)
for i in range(len(words)):
uni = words[i]
if is_present(uni, str_list) and not is_covered(uni, added_phrases):
common_grams.append(uni)
added_phrases.add(uni)
return common_grams
def llm_output(prompt):
return prompt, prompt
def highlight_phrases_with_colors(sentences, phrases):
color_map = {}
color_index = 0
highlighted_html = []
idx = 1
for sentence in sentences:
sentence_with_idx = f"{idx}. {sentence}"
idx += 1
highlighted_sentence = sentence_with_idx
phrase_count = 0
words = re.findall(r'\b\w+\b', sentence)
word_index = 1
for phrase in phrases:
if phrase not in color_map:
color_map[phrase] = f'hsl({color_index * 60 % 360}, 70%, 80%)'
color_index += 1
escaped_phrase = re.escape(phrase)
pattern = rf'\b{escaped_phrase}\b'
highlighted_sentence, num_replacements = re.subn(
pattern,
lambda m, count=phrase_count, color=color_map[phrase], index=word_index: (
f'<span style="background-color: {color}; font-weight: bold;'
f' padding: 2px 4px; border-radius: 2px; position: relative;">'
f'<span style="background-color: black; color: white; border-radius: 50%;'
f' padding: 2px 5px; margin-right: 5px;">{index}</span>'
f'{m.group(0)}'
f'</span>'
),
highlighted_sentence,
flags=re.IGNORECASE
)
if num_replacements > 0:
phrase_count += 1
word_index += 1
highlighted_html.append(highlighted_sentence)
final_html = "<br><br>".join(highlighted_html)
return f'''
<div style="border: solid 1px #; padding: 16px; background-color: #FFFFFF; color: #374151; box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); border-radius: 2px;">
<h3 style="margin-top: 0; font-size: 1em; color: #111827;">Paraphrased And Highlighted Text</h3>
<div style="background-color: #F5F5F5; line-height: 1.6; padding: 15px; border-radius: 2px;">{final_html}</div>
</div>
'''
import re
def highlight_phrases_with_colors_single_sentence(sentence, phrases):
color_map = {}
color_index = 0
highlighted_sentence = sentence
phrase_count = 0
words = re.findall(r'\b\w+\b', sentence)
word_index = 1
for phrase in phrases:
if phrase not in color_map:
color_map[phrase] = f'hsl({color_index * 60 % 360}, 70%, 80%)'
color_index += 1
escaped_phrase = re.escape(phrase)
pattern = rf'\b{escaped_phrase}\b'
highlighted_sentence, num_replacements = re.subn(
pattern,
lambda m, count=phrase_count, color=color_map[phrase], index=word_index: (
f'<span style="background-color: {color}; font-weight: bold;'
f' padding: 2px 4px; border-radius: 2px; position: relative;">'
f'<span style="background-color: black; color: white; border-radius: 50%;'
f' padding: 2px 5px; margin-right: 5px;">{index}</span>'
f'{m.group(0)}'
f'</span>'
),
highlighted_sentence,
flags=re.IGNORECASE
)
if num_replacements > 0:
phrase_count += 1
word_index += 1
final_html = highlighted_sentence
return f'''
<div style="border: solid 1px #; padding: 16px; background-color: #FFFFFF; color: #374151; box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); border-radius: 2px;">
<h3 style="margin-top: 0; font-size: 1em; color: #111827;">Selected Sentence</h3>
<div style="background-color: #F5F5F5; line-height: 1.6; padding: 15px; border-radius: 2px;">{final_html}</div>
</div>
'''
# Function for the Gradio interface
def model(prompt):
generated, sentence = llm_output(prompt)
res = generate_paraphrase(sentence)
common_subs = longest_common_subss(sentence, res)
common_grams = find_common_subsequences(sentence, res)
for i in range(len(common_subs)):
common_subs[i]["Paraphrased Sentence"] = res[i]
generated_highlighted = highlight_phrases_with_colors_single_sentence(generated, common_grams)
result = highlight_phrases_with_colors(res, common_grams)
tree = generate_plot(sentence)
return generated, generated_highlighted, result, tree
with gr.Blocks(theme = gr.themes.Monochrome()) as demo:
gr.Markdown("# Paraphrases the Text and Highlights the Non-melting Points")
with gr.Row():
user_input = gr.Textbox(label="User Prompt")
with gr.Row():
submit_button = gr.Button("Submit")
clear_button = gr.Button("Clear")
with gr.Row():
ai_output = gr.Textbox(label="AI-generated Text (Llama3)")
with gr.Row():
selected_sentence = gr.HTML()
with gr.Row():
html_output = gr.HTML()
with gr.Row():
tree = gr.Plot()
submit_button.click(model, inputs=user_input, outputs=[ai_output, selected_sentence, html_output, tree])
clear_button.click(lambda: "", inputs=None, outputs=user_input)
clear_button.click(lambda: "", inputs=None, outputs=[ai_output, selected_sentence, html_output, tree])
# Launch the demo
demo.launch(share=True) |