File size: 5,718 Bytes
ee305a4
ea7f5b6
 
 
ee305a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea7f5b6
ee305a4
 
 
 
 
ea7f5b6
 
 
 
 
 
 
 
 
 
 
 
 
ee305a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea7f5b6
 
 
 
 
ee305a4
ea7f5b6
 
 
ee305a4
ea7f5b6
ee305a4
ea7f5b6
ee305a4
 
 
 
ea7f5b6
 
ee305a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea7f5b6
 
 
 
 
 
ee305a4
ea7f5b6
 
ee305a4
ea7f5b6
 
 
 
 
 
ee305a4
ea7f5b6
ee305a4
ea7f5b6
ee305a4
ea7f5b6
ee305a4
ea7f5b6
 
ee305a4
ea7f5b6
ee305a4
ea7f5b6
 
 
 
 
 
 
ee305a4
ea7f5b6
 
ee305a4
ea7f5b6
 
 
 
ee305a4
ea7f5b6
 
ee305a4
 
ea7f5b6
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import plotly.graph_objects as go
import textwrap
import re
from collections import defaultdict

def generate_subplot(paraphrased_sentence, scheme_sentences, sampled_sentence, highlight_info):
    # Combine nodes into one list with appropriate labels
    nodes = [paraphrased_sentence] + scheme_sentences + sampled_sentence
    nodes[0] += ' L0'  # Paraphrased sentence is level 0
    para_len = len(scheme_sentences)
    for i in range(1, para_len + 1):
        nodes[i] += ' L1'  # Scheme sentences are level 1
    for i in range(para_len + 1, len(nodes)):
        nodes[i] += ' L2'  # Sampled sentences are level 2

    # Define the highlight_words function
    def highlight_words(sentence, color_map):
        for word, color in color_map.items():
            sentence = re.sub(f"\\b{word}\\b", f"{{{{{word}}}}}", sentence, flags=re.IGNORECASE)
        return sentence

    # Clean and wrap nodes, and highlight specified words globally
    cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes]
    global_color_map = dict(highlight_info)
    highlighted_nodes = [highlight_words(node, global_color_map) for node in cleaned_nodes]
    wrapped_nodes = ['<br>'.join(textwrap.wrap(node, width=30)) for node in highlighted_nodes]

    # Function to determine tree levels and create edges dynamically
    def get_levels_and_edges(nodes):
        levels = {}
        edges = []
        for i, node in enumerate(nodes):
            level = int(node.split()[-1][1])
            levels[i] = level

        # Add edges from L0 to all L1 nodes
        root_node = next(i for i, level in levels.items() if level == 0)
        for i, level in levels.items():
            if level == 1:
                edges.append((root_node, i))

        # Add edges from each L1 node to their corresponding L2 nodes
        l1_indices = [i for i, level in levels.items() if level == 1]
        l2_indices = [i for i, level in levels.items() if level == 2]

        for i, l1_node in enumerate(l1_indices):
            l2_start = i * 4
            for j in range(4):
                l2_index = l2_start + j
                if l2_index < len(l2_indices):
                    edges.append((l1_node, l2_indices[l2_index]))

        # Add edges from each L2 node to their corresponding L3 nodes
        l2_indices = [i for i, level in levels.items() if level == 2]
        l3_indices = [i for i, level in levels.items() if level == 3]

        l2_to_l3_map = {l2_node: [] for l2_node in l2_indices}

        # Map L3 nodes to L2 nodes
        for l3_node in l3_indices:
            l2_node = l3_node % len(l2_indices)
            l2_to_l3_map[l2_indices[l2_node]].append(l3_node)

        for l2_node, l3_nodes in l2_to_l3_map.items():
            for l3_node in l3_nodes:
                edges.append((l2_node, l3_node))

        return levels, edges

    # Get levels and dynamic edges
    levels, edges = get_levels_and_edges(nodes)
    max_level = max(levels.values(), default=0)

    # Calculate positions
    positions = {}
    level_heights = defaultdict(int)
    for node, level in levels.items():
        level_heights[level] += 1

    y_offsets = {level: - (height - 1) / 2 for level, height in level_heights.items()}
    x_gap = 2
    l1_y_gap = 10
    l2_y_gap = 6

    for node, level in levels.items():
        if level == 1:
            positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
        elif level == 2:
            positions[node] = (-level * x_gap, y_offsets[level] * l2_y_gap)
        else:
            positions[node] = (-level * x_gap, y_offsets[level] * l2_y_gap)
        y_offsets[level] += 1

    # Function to highlight words in a wrapped node string
    def color_highlighted_words(node, color_map):
        parts = re.split(r'(\{\{.*?\}\})', node)
        colored_parts = []
        for part in parts:
            match = re.match(r'\{\{(.*?)\}\}', part)
            if match:
                word = match.group(1)
                color = color_map.get(word, 'black')
                colored_parts.append(f"<span style='color: {color};'>{word}</span>")
            else:
                colored_parts.append(part)
        return ''.join(colored_parts)

    # Create figure
    fig = go.Figure()

    # Add nodes to the figure
    for i, node in enumerate(wrapped_nodes):
        colored_node = color_highlighted_words(node, global_color_map)
        x, y = positions[i]
        fig.add_trace(go.Scatter(
            x=[-x],  # Reflect the x coordinate
            y=[y],
            mode='markers',
            marker=dict(size=10, color='blue'),
            hoverinfo='none'
        ))
        fig.add_annotation(
            x=-x,  # Reflect the x coordinate
            y=y,
            text=colored_node,
            showarrow=False,
            xshift=15,
            align="center",
            font=dict(size=8),
            bordercolor='black',
            borderwidth=1,
            borderpad=2,
            bgcolor='white',
            width=150
        )

    # Add edges to the figure
    for edge in edges:
        x0, y0 = positions[edge[0]]
        x1, y1 = positions[edge[1]]
        fig.add_trace(go.Scatter(
            x=[-x0, -x1],  # Reflect the x coordinates
            y=[y0, y1],
            mode='lines',
            line=dict(color='black', width=1)
        ))

    fig.update_layout(
        showlegend=False,
        margin=dict(t=20, b=20, l=20, r=20),
        xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
        yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
        width=1200,  # Adjusted width to accommodate more levels
        height=1000   # Adjusted height to accommodate more levels
    )

    return fig