File size: 5,718 Bytes
ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 ee305a4 ea7f5b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import plotly.graph_objects as go
import textwrap
import re
from collections import defaultdict
def generate_subplot(paraphrased_sentence, scheme_sentences, sampled_sentence, highlight_info):
# Combine nodes into one list with appropriate labels
nodes = [paraphrased_sentence] + scheme_sentences + sampled_sentence
nodes[0] += ' L0' # Paraphrased sentence is level 0
para_len = len(scheme_sentences)
for i in range(1, para_len + 1):
nodes[i] += ' L1' # Scheme sentences are level 1
for i in range(para_len + 1, len(nodes)):
nodes[i] += ' L2' # Sampled sentences are level 2
# Define the highlight_words function
def highlight_words(sentence, color_map):
for word, color in color_map.items():
sentence = re.sub(f"\\b{word}\\b", f"{{{{{word}}}}}", sentence, flags=re.IGNORECASE)
return sentence
# Clean and wrap nodes, and highlight specified words globally
cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes]
global_color_map = dict(highlight_info)
highlighted_nodes = [highlight_words(node, global_color_map) for node in cleaned_nodes]
wrapped_nodes = ['<br>'.join(textwrap.wrap(node, width=30)) for node in highlighted_nodes]
# Function to determine tree levels and create edges dynamically
def get_levels_and_edges(nodes):
levels = {}
edges = []
for i, node in enumerate(nodes):
level = int(node.split()[-1][1])
levels[i] = level
# Add edges from L0 to all L1 nodes
root_node = next(i for i, level in levels.items() if level == 0)
for i, level in levels.items():
if level == 1:
edges.append((root_node, i))
# Add edges from each L1 node to their corresponding L2 nodes
l1_indices = [i for i, level in levels.items() if level == 1]
l2_indices = [i for i, level in levels.items() if level == 2]
for i, l1_node in enumerate(l1_indices):
l2_start = i * 4
for j in range(4):
l2_index = l2_start + j
if l2_index < len(l2_indices):
edges.append((l1_node, l2_indices[l2_index]))
# Add edges from each L2 node to their corresponding L3 nodes
l2_indices = [i for i, level in levels.items() if level == 2]
l3_indices = [i for i, level in levels.items() if level == 3]
l2_to_l3_map = {l2_node: [] for l2_node in l2_indices}
# Map L3 nodes to L2 nodes
for l3_node in l3_indices:
l2_node = l3_node % len(l2_indices)
l2_to_l3_map[l2_indices[l2_node]].append(l3_node)
for l2_node, l3_nodes in l2_to_l3_map.items():
for l3_node in l3_nodes:
edges.append((l2_node, l3_node))
return levels, edges
# Get levels and dynamic edges
levels, edges = get_levels_and_edges(nodes)
max_level = max(levels.values(), default=0)
# Calculate positions
positions = {}
level_heights = defaultdict(int)
for node, level in levels.items():
level_heights[level] += 1
y_offsets = {level: - (height - 1) / 2 for level, height in level_heights.items()}
x_gap = 2
l1_y_gap = 10
l2_y_gap = 6
for node, level in levels.items():
if level == 1:
positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
elif level == 2:
positions[node] = (-level * x_gap, y_offsets[level] * l2_y_gap)
else:
positions[node] = (-level * x_gap, y_offsets[level] * l2_y_gap)
y_offsets[level] += 1
# Function to highlight words in a wrapped node string
def color_highlighted_words(node, color_map):
parts = re.split(r'(\{\{.*?\}\})', node)
colored_parts = []
for part in parts:
match = re.match(r'\{\{(.*?)\}\}', part)
if match:
word = match.group(1)
color = color_map.get(word, 'black')
colored_parts.append(f"<span style='color: {color};'>{word}</span>")
else:
colored_parts.append(part)
return ''.join(colored_parts)
# Create figure
fig = go.Figure()
# Add nodes to the figure
for i, node in enumerate(wrapped_nodes):
colored_node = color_highlighted_words(node, global_color_map)
x, y = positions[i]
fig.add_trace(go.Scatter(
x=[-x], # Reflect the x coordinate
y=[y],
mode='markers',
marker=dict(size=10, color='blue'),
hoverinfo='none'
))
fig.add_annotation(
x=-x, # Reflect the x coordinate
y=y,
text=colored_node,
showarrow=False,
xshift=15,
align="center",
font=dict(size=8),
bordercolor='black',
borderwidth=1,
borderpad=2,
bgcolor='white',
width=150
)
# Add edges to the figure
for edge in edges:
x0, y0 = positions[edge[0]]
x1, y1 = positions[edge[1]]
fig.add_trace(go.Scatter(
x=[-x0, -x1], # Reflect the x coordinates
y=[y0, y1],
mode='lines',
line=dict(color='black', width=1)
))
fig.update_layout(
showlegend=False,
margin=dict(t=20, b=20, l=20, r=20),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
width=1200, # Adjusted width to accommodate more levels
height=1000 # Adjusted height to accommodate more levels
)
return fig |