Spaces:
Runtime error
Runtime error
File size: 13,648 Bytes
7f3430b 192447d 9916325 192447d f684fa1 192447d b8d3256 192447d b8d3256 192447d b8d3256 192447d b8d3256 192447d b8d3256 192447d b8d3256 192447d b8d3256 192447d 9916325 192447d 92b0167 192447d b88951f f684fa1 192447d c1009f8 b370650 c1009f8 8ff2c37 c1009f8 b370650 192447d b8d3256 192447d b8d3256 5f00699 3595ee8 089a83f 192447d 089a83f c1009f8 089a83f 192447d 089a83f 192447d 089a83f 192447d b8d3256 192447d b8d3256 7702656 089a83f 192447d 089a83f 1e2e0a1 192447d 0436599 192447d 7a0c9f7 192447d 7a0c9f7 b8d3256 192447d b8d3256 192447d b8d3256 192447d b8d3256 192447d b8d3256 192447d b8d3256 192447d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
import gradio as gr
import os
import logging
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import ChatOpenAI
from langchain_community.graphs import Neo4jGraph
from typing import List, Tuple
from pydantic import BaseModel, Field
from langchain_core.messages import AIMessage, HumanMessage
from langchain_core.runnables import (
RunnableBranch,
RunnableLambda,
RunnablePassthrough,
RunnableParallel,
)
from langchain_core.prompts.prompt import PromptTemplate
import requests
import tempfile
from langchain.memory import ConversationBufferWindowMemory
import time
import logging
from langchain.chains import ConversationChain
import torch
import torchaudio
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
import numpy as np
import threading
#code for history
conversational_memory = ConversationBufferWindowMemory(
memory_key='chat_history',
k=10,
return_messages=True
)
# Setup Neo4j
graph = Neo4jGraph(
url="neo4j+s://c62d0d35.databases.neo4j.io",
username="neo4j",
password="_x8f-_aAQvs2NB0x6s0ZHSh3W_y-HrENDbgStvsUCM0"
)
# Define entity extraction and retrieval functions
class Entities(BaseModel):
names: List[str] = Field(
..., description="All the person, organization, or business entities that appear in the text"
)
entity_prompt = ChatPromptTemplate.from_messages([
("system", "You are extracting organization and person entities from the text."),
("human", "Use the given format to extract information from the following input: {question}"),
])
chat_model = ChatOpenAI(temperature=0, model_name="gpt-4o", api_key=os.environ['OPENAI_API_KEY'])
entity_chain = entity_prompt | chat_model.with_structured_output(Entities)
def remove_lucene_chars(input: str) -> str:
return input.translate(str.maketrans({
"\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!",
"(": r"\(", ")": r"\)", "{": r"\{", "}": r"\}", "[": r"\[", "]": r"\]",
"^": r"\^", "~": r"\~", "*": r"\*", "?": r"\?", ":": r"\:", '"': r'\"',
";": r"\;", " ": r"\ "
}))
def generate_full_text_query(input: str) -> str:
full_text_query = ""
words = [el for el in remove_lucene_chars(input).split() if el]
for word in words[:-1]:
full_text_query += f" {word}~2 AND"
full_text_query += f" {words[-1]}~2"
return full_text_query.strip()
# Setup logging to a file to capture debug information
logging.basicConfig(filename='neo4j_retrieval.log', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
def structured_retriever(question: str) -> str:
result = ""
entities = entity_chain.invoke({"question": question})
for entity in entities.names:
response = graph.query(
"""CALL db.index.fulltext.queryNodes('entity', $query, {limit:2})
YIELD node,score
CALL {
WITH node
MATCH (node)-[r:!MENTIONS]->(neighbor)
RETURN node.id + ' - ' + type(r) + ' -> ' + neighbor.id AS output
UNION ALL
WITH node
MATCH (node)<-[r:!MENTIONS]-(neighbor)
RETURN neighbor.id + ' - ' + type(r) + ' -> ' + node.id AS output
}
RETURN output LIMIT 50
""",
{"query": generate_full_text_query(entity)},
)
result += "\n".join([el['output'] for el in response])
return result
def retriever_neo4j(question: str):
structured_data = structured_retriever(question)
logging.debug(f"Structured data: {structured_data}")
return structured_data
# Setup for condensing the follow-up questions
_template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question,
in its original language.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:"""
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
def _format_chat_history(chat_history: list[tuple[str, str]]) -> list:
buffer = []
for human, ai in chat_history:
buffer.append(HumanMessage(content=human))
buffer.append(AIMessage(content=ai))
return buffer
_search_query = RunnableBranch(
(
RunnableLambda(lambda x: bool(x.get("chat_history"))).with_config(
run_name="HasChatHistoryCheck"
),
RunnablePassthrough.assign(
chat_history=lambda x: _format_chat_history(x["chat_history"])
)
| CONDENSE_QUESTION_PROMPT
| ChatOpenAI(temperature=0, api_key=os.environ['OPENAI_API_KEY'])
| StrOutputParser(),
),
RunnableLambda(lambda x: x["question"]),
)
template = """I am a guide for Birmingham, Alabama. I can provide recommendations and insights about the city, including events and activities.
Ask your question directly, and I'll provide a precise and quick,short and crisp response in a conversational way without any Greet.
{context}
Question: {question}
Answer:"""
qa_prompt = ChatPromptTemplate.from_template(template)
# Define the chain for Neo4j-based retrieval and response generation
chain_neo4j = (
RunnableParallel(
{
"context": _search_query | retriever_neo4j,
"question": RunnablePassthrough(),
}
)
| qa_prompt
| chat_model
| StrOutputParser()
)
# Define the function to get the response
def get_response(question):
try:
return chain_neo4j.invoke({"question": question})
except Exception as e:
return f"Error: {str(e)}"
# Define the function to clear input and output
def clear_fields():
return [],"",None
# Function to generate audio with Eleven Labs TTS
def generate_audio_elevenlabs(text):
XI_API_KEY = os.environ['ELEVENLABS_API']
VOICE_ID = 'ehbJzYLQFpwbJmGkqbnW'
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
headers = {
"Accept": "application/json",
"xi-api-key": XI_API_KEY
}
data = {
"text": str(text),
"model_id": "eleven_multilingual_v2",
"voice_settings": {
"stability": 1.0,
"similarity_boost": 0.0,
"style": 0.60,
"use_speaker_boost": False
}
}
response = requests.post(tts_url, headers=headers, json=data, stream=True)
if response.ok:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
for chunk in response.iter_content(chunk_size=1024):
if chunk:
f.write(chunk)
audio_path = f.name
logging.debug(f"Audio saved to {audio_path}")
return audio_path # Return audio path for automatic playback
else:
logging.error(f"Error generating audio: {response.text}")
return None
def handle_mode_selection(mode, chat_history, question):
if mode == "Normal Chatbot":
# Append the user's question to chat history first
chat_history.append((question, "")) # Placeholder for the bot's response
# Stream the response and update chat history with each chunk
for response_chunk in chat_with_bot(chat_history):
chat_history[-1] = (question, response_chunk[-1][1]) # Update last entry with streamed response
yield chat_history, "", None # Stream each chunk to display in the chatbot
yield chat_history, "", None # Final yield to complete the response
elif mode == "Voice to Voice Conversation":
# Voice to Voice mode: Stream the response text and then convert it to audio
response_text = get_response(question) # Retrieve response text
audio_path = generate_audio_elevenlabs(response_text) # Convert response to audio
yield [], "", audio_path # Only output the audio response without updating chatbot history
# Function to add a user's message to the chat history and clear the input box
def add_message(history, message):
if message.strip():
history.append((message, "")) # Add the user's message to the chat history only if it's not empty
return history, "" # Clear the input box
# Define function to generate a streaming response
def chat_with_bot(messages):
user_message = messages[-1][0] # Get the last user message (input)
messages[-1] = (user_message, "") # Prepare a placeholder for the bot's response
response = get_response(user_message) # Assume `get_response` is a generator function
# Stream each character in the response and update the history progressively
for character in response:
messages[-1] = (user_message, messages[-1][1] + character)
yield messages # Stream each updated chunk
time.sleep(0.05) # Adjust delay as needed for real-time effect
yield messages # Final yield to complete the response
# Function to generate audio with Eleven Labs TTS from the last bot response
def generate_audio_from_last_response(history):
# Get the most recent bot response from the chat history
if history and len(history) > 0:
recent_response = history[-1][1] # The second item in the tuple is the bot response text
if recent_response:
return generate_audio_elevenlabs(recent_response)
return None
# Define the ASR model with Whisper
model_id = 'openai/whisper-large-v3'
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe_asr = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=15,
batch_size=16,
torch_dtype=torch_dtype,
device=device,
return_timestamps=True
)
# Define the function to reset the state after 10 seconds
def auto_reset_state():
time.sleep(5)
return None, "" # Reset the state and clear input text
def transcribe_function(stream, new_chunk):
try:
sr, y = new_chunk[0], new_chunk[1]
except TypeError:
print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
return stream, "", None
# Ensure y is not empty and is at least 1-dimensional
if y is None or len(y) == 0:
return stream, "", None
y = y.astype(np.float32)
max_abs_y = np.max(np.abs(y))
if max_abs_y > 0:
y = y / max_abs_y
# Ensure stream is also at least 1-dimensional before concatenation
if stream is not None and len(stream) > 0:
stream = np.concatenate([stream, y])
else:
stream = y
# Process the audio data for transcription
result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
full_text = result.get("text", "")
# Start a thread to reset the state after 10 seconds
threading.Thread(target=auto_reset_state).start()
return stream, full_text, full_text
# Define the function to clear the state and input text
def clear_transcription_state():
return None, ""
with gr.Blocks(theme="rawrsor1/Everforest") as demo:
# Hide the chatbot component by setting `visible=False`
chatbot = gr.Chatbot([], elem_id="RADAR", bubble_full_width=False, visible=False)
with gr.Row():
with gr.Column():
# Hide the "Normal Chatbot" radio button by removing it or setting `visible=False`
mode_selection = gr.Radio(
choices=["Voice to Voice Conversation"], # Removed "Normal Chatbot" option
label="Mode Selection",
value="Voice to Voice Conversation",
visible=False # Hide the mode selection entirely
)
# Remaining code unchanged
with gr.Row():
with gr.Column():
question_input = gr.Textbox(label="Ask a Question", placeholder="Type your question here...",visible=False)
audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', every=0.1, label="Speak to Ask")
submit_voice_btn = gr.Button("Submit Voice")
with gr.Column():
audio_output = gr.Audio(label="Audio", type="filepath", autoplay=True, interactive=False)
with gr.Row():
with gr.Column():
clear_state_btn = gr.Button("Clear State")
with gr.Column():
clean_btn = gr.Button("Clean")
# Adjust the interactions for the Get Response button
submit_voice_btn.click(
fn=handle_mode_selection,
inputs=[mode_selection, chatbot, question_input],
outputs=[chatbot, question_input, audio_output],
api_name="api_voice_to_voice_translation"
)
# Speech-to-Text functionality
state = gr.State()
audio_input.stream(
transcribe_function,
inputs=[state, audio_input],
outputs=[state, question_input],
api_name="api_voice_to_text"
)
clean_btn.click(
fn=clear_fields,
inputs=[],
outputs=[chatbot, question_input, audio_output],
api_name="api_clear_textbox"
)
# Clear state interaction
clear_state_btn.click(
fn=clear_transcription_state,
outputs=[question_input, state],
api_name="api_clean_state_transcription"
)
# Launch the Gradio interface
demo.launch(show_error=True, share=True) |