Spaces:
Runtime error
Runtime error
File size: 7,741 Bytes
7f3430b c71d159 3e8507d 6f63f06 c71d159 92b0167 c71d159 cc3ca63 e073181 3e8507d 74d7618 ceb547f 3e8507d 785de07 3e8507d 785de07 3e8507d 785de07 3e8507d 92b0167 c71d159 92b0167 3e8507d dcfae74 c71d159 8d76824 c71d159 3e8507d c71d159 dcfae74 c71d159 92b0167 3e8507d 7f88d3d 3e8507d 7f88d3d c71d159 3e8507d c71d159 3e8507d 92b0167 c71d159 3e8507d c71d159 3e8507d c71d159 3e8507d c71d159 3e8507d c71d159 7702656 3e8507d 7702656 3e8507d 7702656 c71d159 c689665 ea67e08 785de07 3e8507d 785de07 3e8507d 785de07 da843cf 785de07 3e8507d 934e44a 3e8507d 934e44a c71d159 3e8507d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import gradio as gr
import os
import logging
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_community.graphs import Neo4jGraph
from langchain_groq import ChatGroq
from langchain.chains import GraphCypherQAChain
from pydantic import BaseModel, Field
from langchain_core.messages import AIMessage, HumanMessage
from langchain_core.runnables import (
RunnableBranch,
RunnableLambda,
RunnablePassthrough,
RunnableParallel,
)
from langchain_core.prompts.prompt import PromptTemplate
import tempfile
import time
import threading
import torch
import numpy as np
import requests
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
# Setup logging to a file to capture debug information
logging.basicConfig(filename='neo4j_retrieval.log', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
# Setup for conversational memory
conversational_memory = ConversationBufferWindowMemory(
memory_key='chat_history',
k=10,
return_messages=True
)
# Setup Neo4j
graph = Neo4jGraph(
url="neo4j+s://6457770f.databases.neo4j.io",
username="neo4j",
password="Z10duoPkKCtENuOukw3eIlvl0xJWKtrVSr-_hGX1LQ4"
)
# Setup the Groq model
groq_api_key = os.getenv('GROQ_API_KEY')
llm = ChatGroq(groq_api_key=groq_api_key, model_name="Gemma2-9b-It")
# Define entity extraction and retrieval functions
class Entities(BaseModel):
names: List[str] = Field(
..., description="All the person, organization, or business entities that appear in the text"
)
entity_prompt = ChatPromptTemplate.from_messages([
("system", "You are extracting organization and person entities from the text."),
("human", "Use the given format to extract information from the following input: {question}"),
])
entity_chain = entity_prompt | llm.with_structured_output(Entities)
def remove_lucene_chars(input: str) -> str:
return input.translate(str.maketrans({
"\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!",
"(": r"\(", ")": r"\)", "{": r"\{", "}": r"\}", "[": r"\[", "]": r"\]",
"^": r"\^", "~": r"\~", "*": r"\*", "?": r"\?", ":": r"\:", '"': r'\"',
";": r"\;", " ": r"\ "
}))
def generate_full_text_query(input: str) -> str:
full_text_query = ""
words = [el for el in remove_lucene_chars(input).split() if el]
for word in words[:-1]:
full_text_query += f" {word}~2 AND"
full_text_query += f" {words[-1]}~2"
return full_text_query.strip()
def structured_retriever(question: str) -> str:
result = ""
entities = entity_chain.invoke({"question": question})
for entity in entities.names:
response = graph.query(
"""CALL db.index.fulltext.queryNodes('entity', $query, {limit:2})
YIELD node,score
CALL {
WITH node
MATCH (node)-[r:!MENTIONS]->(neighbor)
RETURN node.id + ' - ' + type(r) + ' -> ' + neighbor.id AS output
UNION ALL
WITH node
MATCH (node)<-[r:!MENTIONS]-(neighbor)
RETURN neighbor.id + ' - ' + type(r) + ' -> ' + node.id AS output
}
RETURN output LIMIT 50
""",
{"query": generate_full_text_query(entity)},
)
result += "\n".join([el['output'] for el in response])
return result
def retriever_neo4j(question: str):
structured_data = structured_retriever(question)
logging.debug(f"Structured data: {structured_data}")
return structured_data
# Condense follow-up questions to standalone
_template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question,
in its original language.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:"""
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
def _format_chat_history(chat_history: list[tuple[str, str]]) -> list:
buffer = []
for human, ai in chat_history:
buffer.append(HumanMessage(content=human))
buffer.append(AIMessage(content=ai))
return buffer
_search_query = RunnableBranch(
(
RunnableLambda(lambda x: bool(x.get("chat_history"))).with_config(
run_name="HasChatHistoryCheck"
),
RunnablePassthrough.assign(
chat_history=lambda x: _format_chat_history(x["chat_history"])
)
| CONDENSE_QUESTION_PROMPT
| llm
| StrOutputParser(),
),
RunnableLambda(lambda x: x["question"]),
)
# Define the prompt for response generation
template = """I am a guide for Birmingham, Alabama. I can provide recommendations and insights about the city, including events and activities.
Ask your question directly, and I'll provide a precise, short, and crisp response in a conversational way without any greeting.
{context}
Question: {question}
Answer:"""
qa_prompt = ChatPromptTemplate.from_template(template)
# Define the chain for Neo4j-based retrieval and response generation
chain_neo4j = (
RunnableParallel(
{
"context": _search_query | retriever_neo4j,
"question": RunnablePassthrough(),
}
)
| qa_prompt
| llm
| StrOutputParser()
)
# Define the function to get the response
def get_response(question):
try:
return chain_neo4j.invoke({"question": question})
except Exception as e:
logging.error(f"Error generating response: {str(e)}")
return f"Error: {str(e)}"
# Define the function to clear input and output
def clear_fields():
return [], "", None
# Function to generate audio with Eleven Labs TTS
def generate_audio_elevenlabs(text):
XI_API_KEY = os.environ['ELEVENLABS_API']
VOICE_ID = 'ehbJzYLQFpwbJmGkqbnW'
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
headers = {"Accept": "application/json", "xi-api-key": XI_API_KEY}
data = {"text": str(text), "model_id": "eleven_multilingual_v2", "voice_settings": {"stability": 1.0}}
response = requests.post(tts_url, headers=headers, json=data, stream=True)
if response.ok:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
for chunk in response.iter_content(chunk_size=1024):
if chunk:
f.write(chunk)
audio_path = f.name
logging.debug(f"Audio saved to {audio_path}")
return audio_path # Return audio path for playback
else:
logging.error(f"Error generating audio: {response.text}")
return None
# Create the Gradio Blocks interface
with gr.Blocks(theme="rawrsor1/Everforest") as demo:
chatbot = gr.Chatbot([], elem_id="RADAR", bubble_full_width=False)
with gr.Row():
with gr.Column():
question_input = gr.Textbox(label="Ask a Question", placeholder="Type your question here...")
with gr.Column():
audio_output = gr.Audio(label="Audio", type="filepath", autoplay=True, interactive=False)
with gr.Row():
with gr.Column():
get_response_btn = gr.Button("Get Response")
with gr.Column():
generate_audio_btn = gr.Button("Generate Audio")
with gr.Column():
clear_state_btn = gr.Button("Clear State")
# Define interactions for buttons
get_response_btn.click(fn=get_response, inputs=question_input, outputs=chatbot)
generate_audio_btn.click(fn=generate_audio_elevenlabs, inputs=chatbot, outputs=audio_output)
clear_state_btn.click(fn=clear_fields, outputs=[chatbot, question_input, audio_output])
# Launch the Gradio interface
demo.launch(show_error=True)
|