File size: 7,741 Bytes
7f3430b
 
c71d159
 
 
 
3e8507d
 
6f63f06
c71d159
 
 
 
 
 
92b0167
c71d159
cc3ca63
e073181
3e8507d
74d7618
ceb547f
3e8507d
 
 
785de07
3e8507d
 
785de07
3e8507d
785de07
3e8507d
 
 
 
92b0167
c71d159
 
 
 
 
92b0167
 
3e8507d
 
 
dcfae74
c71d159
 
 
 
 
 
 
 
 
 
 
8d76824
c71d159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e8507d
c71d159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcfae74
c71d159
 
 
92b0167
 
3e8507d
 
 
 
 
 
7f88d3d
3e8507d
7f88d3d
c71d159
 
 
 
3e8507d
 
c71d159
 
3e8507d
 
 
92b0167
 
c71d159
3e8507d
c71d159
3e8507d
c71d159
3e8507d
c71d159
 
 
 
3e8507d
c71d159
7702656
 
 
 
 
3e8507d
 
7702656
 
 
 
 
 
 
 
3e8507d
7702656
 
 
 
c71d159
c689665
ea67e08
785de07
 
3e8507d
785de07
3e8507d
 
785de07
da843cf
785de07
 
 
 
3e8507d
934e44a
3e8507d
 
 
 
934e44a
c71d159
3e8507d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import gradio as gr
import os
import logging
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_community.graphs import Neo4jGraph
from langchain_groq import ChatGroq
from langchain.chains import GraphCypherQAChain
from pydantic import BaseModel, Field
from langchain_core.messages import AIMessage, HumanMessage
from langchain_core.runnables import (
    RunnableBranch,
    RunnableLambda,
    RunnablePassthrough,
    RunnableParallel,
)
from langchain_core.prompts.prompt import PromptTemplate
import tempfile
import time
import threading
import torch
import numpy as np
import requests
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor


# Setup logging to a file to capture debug information
logging.basicConfig(filename='neo4j_retrieval.log', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')

# Setup for conversational memory
conversational_memory = ConversationBufferWindowMemory(
    memory_key='chat_history',
    k=10,
    return_messages=True
)

# Setup Neo4j
graph = Neo4jGraph(
    url="neo4j+s://6457770f.databases.neo4j.io",
    username="neo4j",
    password="Z10duoPkKCtENuOukw3eIlvl0xJWKtrVSr-_hGX1LQ4"
)

# Setup the Groq model
groq_api_key = os.getenv('GROQ_API_KEY')
llm = ChatGroq(groq_api_key=groq_api_key, model_name="Gemma2-9b-It")

# Define entity extraction and retrieval functions
class Entities(BaseModel):
    names: List[str] = Field(
        ..., description="All the person, organization, or business entities that appear in the text"
    )

entity_prompt = ChatPromptTemplate.from_messages([
    ("system", "You are extracting organization and person entities from the text."),
    ("human", "Use the given format to extract information from the following input: {question}"),
])

entity_chain = entity_prompt | llm.with_structured_output(Entities)

def remove_lucene_chars(input: str) -> str:
    return input.translate(str.maketrans({
        "\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!",
        "(": r"\(", ")": r"\)", "{": r"\{", "}": r"\}", "[": r"\[", "]": r"\]",
        "^": r"\^", "~": r"\~", "*": r"\*", "?": r"\?", ":": r"\:", '"': r'\"',
        ";": r"\;", " ": r"\ "
    }))

def generate_full_text_query(input: str) -> str:
    full_text_query = ""
    words = [el for el in remove_lucene_chars(input).split() if el]
    for word in words[:-1]:
        full_text_query += f" {word}~2 AND"
    full_text_query += f" {words[-1]}~2"
    return full_text_query.strip()

def structured_retriever(question: str) -> str:
    result = ""
    entities = entity_chain.invoke({"question": question})
    for entity in entities.names:
        response = graph.query(
            """CALL db.index.fulltext.queryNodes('entity', $query, {limit:2})
            YIELD node,score
            CALL {
              WITH node
              MATCH (node)-[r:!MENTIONS]->(neighbor)
              RETURN node.id + ' - ' + type(r) + ' -> ' + neighbor.id AS output
              UNION ALL
              WITH node
              MATCH (node)<-[r:!MENTIONS]-(neighbor)
              RETURN neighbor.id + ' - ' + type(r) + ' -> ' +  node.id AS output
            }
            RETURN output LIMIT 50
            """,
            {"query": generate_full_text_query(entity)},
        )
        result += "\n".join([el['output'] for el in response])
    return result

def retriever_neo4j(question: str):
    structured_data = structured_retriever(question)
    logging.debug(f"Structured data: {structured_data}")
    return structured_data

# Condense follow-up questions to standalone
_template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question,
in its original language.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:"""

CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)

def _format_chat_history(chat_history: list[tuple[str, str]]) -> list:
    buffer = []
    for human, ai in chat_history:
        buffer.append(HumanMessage(content=human))
        buffer.append(AIMessage(content=ai))
    return buffer

_search_query = RunnableBranch(
    (
        RunnableLambda(lambda x: bool(x.get("chat_history"))).with_config(
            run_name="HasChatHistoryCheck"
        ),
        RunnablePassthrough.assign(
            chat_history=lambda x: _format_chat_history(x["chat_history"])
        )
        | CONDENSE_QUESTION_PROMPT
        | llm
        | StrOutputParser(),
    ),
    RunnableLambda(lambda x: x["question"]),
)

# Define the prompt for response generation
template = """I am a guide for Birmingham, Alabama. I can provide recommendations and insights about the city, including events and activities.
Ask your question directly, and I'll provide a precise, short, and crisp response in a conversational way without any greeting.
{context}
Question: {question}
Answer:"""

qa_prompt = ChatPromptTemplate.from_template(template)

# Define the chain for Neo4j-based retrieval and response generation
chain_neo4j = (
    RunnableParallel(
        {
            "context": _search_query | retriever_neo4j,
            "question": RunnablePassthrough(),
        }
    )
    | qa_prompt
    | llm
    | StrOutputParser()
)

# Define the function to get the response
def get_response(question):
    try:
        return chain_neo4j.invoke({"question": question})
    except Exception as e:
        logging.error(f"Error generating response: {str(e)}")
        return f"Error: {str(e)}"

# Define the function to clear input and output
def clear_fields():
    return [], "", None

# Function to generate audio with Eleven Labs TTS
def generate_audio_elevenlabs(text):
    XI_API_KEY = os.environ['ELEVENLABS_API']
    VOICE_ID = 'ehbJzYLQFpwbJmGkqbnW'
    tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
    headers = {"Accept": "application/json", "xi-api-key": XI_API_KEY}
    data = {"text": str(text), "model_id": "eleven_multilingual_v2", "voice_settings": {"stability": 1.0}}
    response = requests.post(tts_url, headers=headers, json=data, stream=True)
    if response.ok:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
            for chunk in response.iter_content(chunk_size=1024):
                if chunk:
                    f.write(chunk)
            audio_path = f.name
        logging.debug(f"Audio saved to {audio_path}")
        return audio_path  # Return audio path for playback
    else:
        logging.error(f"Error generating audio: {response.text}")
        return None

# Create the Gradio Blocks interface
with gr.Blocks(theme="rawrsor1/Everforest") as demo:
    chatbot = gr.Chatbot([], elem_id="RADAR", bubble_full_width=False)
    with gr.Row():
        with gr.Column():
            question_input = gr.Textbox(label="Ask a Question", placeholder="Type your question here...")
        with gr.Column():
            audio_output = gr.Audio(label="Audio", type="filepath", autoplay=True, interactive=False)

    with gr.Row():
        with gr.Column():
            get_response_btn = gr.Button("Get Response")
        with gr.Column():
            generate_audio_btn = gr.Button("Generate Audio")
        with gr.Column():
            clear_state_btn = gr.Button("Clear State")

    # Define interactions for buttons
    get_response_btn.click(fn=get_response, inputs=question_input, outputs=chatbot)
    generate_audio_btn.click(fn=generate_audio_elevenlabs, inputs=chatbot, outputs=audio_output)
    clear_state_btn.click(fn=clear_fields, outputs=[chatbot, question_input, audio_output])

# Launch the Gradio interface
demo.launch(show_error=True)