Pijush2023's picture
Update app.py
091ce1a verified
raw
history blame
5.66 kB
import gradio as gr
import torch
import requests
import tempfile
import threading
import numpy as np
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_community.vectorstores import Neo4jVector
from langchain_community.graphs import Neo4jGraph
from langchain_core.prompts import ChatPromptTemplate
import time
import os
import io
from pydub import AudioSegment
from dataclasses import dataclass
from utils import determine_pause
# Define AppState dataclass for managing the application's state
@dataclass
class AppState:
stream: np.ndarray | None = None
sampling_rate: int = 0
pause_detected: bool = False
stopped: bool = False
conversation: list = []
# Neo4j setup
graph = Neo4jGraph(
url="neo4j+s://c62d0d35.databases.neo4j.io",
username="neo4j",
password="_x8f-_aAQvs2NB0x6s0ZHSh3W_y-HrENDbgStvsUCM0"
)
# Initialize the vector index with Neo4j
vector_index = Neo4jVector.from_existing_graph(
OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY']),
graph=graph,
search_type="hybrid",
node_label="Document",
text_node_properties=["text"],
embedding_node_property="embedding",
)
# Define the ASR model with Whisper
model_id = 'openai/whisper-large-v3'
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe_asr = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=15,
batch_size=16,
torch_dtype=torch_dtype,
device=device,
return_timestamps=True
)
# Function to reset the state after 2 seconds
def auto_reset_state():
time.sleep(2)
return AppState() # Reset the state
# Function to process audio input and transcribe it
def transcribe_function(state: AppState, new_chunk):
try:
sr, y = new_chunk[0], new_chunk[1]
except TypeError:
print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
return state, ""
if y is None or len(y) == 0:
return state, ""
y = y.astype(np.float32)
max_abs_y = np.max(np.abs(y))
if max_abs_y > 0:
y = y / max_abs_y
if state.stream is not None and len(state.stream) > 0:
state.stream = np.concatenate([state.stream, y])
else:
state.stream = y
result = pipe_asr({"array": state.stream, "sampling_rate": sr}, return_timestamps=False)
full_text = result.get("text", "")
threading.Thread(target=auto_reset_state).start()
return state, full_text
# Function to generate a response using the prompt and the context
def generate_response_with_prompt(context, question):
formatted_prompt = prompt.format(context=context, question=question)
llm = ChatOpenAI(temperature=0, api_key=os.environ['OPENAI_API_KEY'])
response = llm(formatted_prompt)
return response.content.strip()
# Function to generate audio with Eleven Labs TTS
def generate_audio_elevenlabs(text):
XI_API_KEY = os.environ['ELEVENLABS_API']
VOICE_ID = 'ehbJzYLQFpwbJmGkqbnW'
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
headers = {"Accept": "application/json", "xi-api-key": XI_API_KEY}
data = {"text": text, "model_id": "eleven_multilingual_v2", "voice_settings": {"stability": 1.0}}
response = requests.post(tts_url, headers=headers, json=data, stream=True)
if response.ok:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
for chunk in response.iter_content(chunk_size=1024):
f.write(chunk)
return f.name
else:
print(f"Error generating audio: {response.text}")
return None
# Define the function to retrieve information using Neo4j and the vector store
def retriever(question: str):
structured_query = """
CALL db.index.fulltext.queryNodes('entity', $query, {limit: 2})
YIELD node, score
RETURN node.id AS entity, node.text AS context, score
ORDER BY score DESC
LIMIT 2
"""
structured_data = graph.query(structured_query, {"query": generate_full_text_query(question)})
structured_response = "\n".join([f"{record['entity']}: {record['context']}" for record in structured_data])
unstructured_data = [el.page_content for el in vector_index.similarity_search(question)]
unstructured_response = "\n".join(unstructured_data)
combined_context = f"Structured data:\n{structured_response}\n\nUnstructured data:\n{unstructured_response}"
return generate_response_with_prompt(combined_context, question)
# Function to handle the entire audio query and response process
def process_audio_query(state: AppState, audio_input):
state, transcription = transcribe_function(state, audio_input)
response_text = retriever(transcription)
audio_path = generate_audio_elevenlabs(response_text)
return audio_path, state
# Create Gradio interface for audio input and output
with gr.Blocks() as interface:
audio_input = gr.Audio(sources="microphone", type="numpy", streaming=True, every=0.1)
submit_button = gr.Button("Submit")
audio_output = gr.Audio(type="filepath", autoplay=True)
state = gr.State(AppState())
submit_button.click(fn=process_audio_query, inputs=[state, audio_input], outputs=[audio_output, state])
# Launch the Gradio app
interface.launch()