Pijush2023's picture
Update app.py
e403f26 verified
raw
history blame
8.11 kB
import gradio as gr
import torch
import requests
import tempfile
import threading
import numpy as np
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_community.vectorstores import Neo4jVector
from langchain_community.graphs import Neo4jGraph
from langchain_experimental.graph_transformers import LLMGraphTransformer
from langchain_core.prompts import ChatPromptTemplate
import time
import os
# Neo4j setup
graph = Neo4jGraph(
url="neo4j+s://c62d0d35.databases.neo4j.io",
username="neo4j",
password="_x8f-_aAQvs2NB0x6s0ZHSh3W_y-HrENDbgStvsUCM0"
)
# Initialize the vector index with Neo4j
vector_index = Neo4jVector.from_existing_graph(
OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY']),
graph=graph,
search_type="hybrid",
node_label="Document",
text_node_properties=["text"],
embedding_node_property="embedding",
)
# Define the ASR model with Whisper
model_id = 'openai/whisper-large-v3'
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe_asr = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=15,
batch_size=16,
torch_dtype=torch_dtype,
device=device,
return_timestamps=True
)
# Function to reset the state after 10 seconds
def auto_reset_state():
time.sleep(2)
return None, "" # Reset the state and clear input text
# Function to process audio input and transcribe it
def transcribe_function(stream, new_chunk):
try:
sr, y = new_chunk[0], new_chunk[1]
except TypeError:
print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
return stream, "", None
# Ensure y is not empty and is at least 1-dimensional
if y is None or len(y) == 0:
return stream, "", None
y = y.astype(np.float32)
max_abs_y = np.max(np.abs(y))
if max_abs_y > 0:
y = y / max_abs_y
# Ensure stream is also at least 1-dimensional before concatenation
if stream is not None and len(stream) > 0:
stream = np.concatenate([stream, y])
else:
stream = y
# Process the audio data for transcription
result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
full_text = result.get("text", "")
# Start a thread to reset the state after 10 seconds
threading.Thread(target=auto_reset_state).start()
return stream, full_text, full_text
# Function to generate a full-text search query for Neo4j
#def generate_full_text_query(input: str) -> str:
#full_text_query = ""
#words = [el for el in input.split() if el]
#for word in words[:-1]:
#full_text_query += f" {word}~2 AND"
#full_text_query += f" {words[-1]}~2"
#return full_text_query.strip()
# Function to generate a full-text search query for Neo4j
def generate_full_text_query(input: str) -> str:
# Split the input into words, ignoring any empty strings
words = [el for el in input.split() if el]
# Check if there are no words
if not words:
return "" # Return an empty string or a default query if desired
# Create the full-text query with fuzziness (~2 for proximity search)
full_text_query = ""
for word in words[:-1]:
full_text_query += f" {word}~2 AND"
full_text_query += f" {words[-1]}~2"
return full_text_query.strip()
# Function to generate audio with Eleven Labs TTS
def generate_audio_elevenlabs(text):
XI_API_KEY = os.environ['ELEVENLABS_API']
VOICE_ID = 'ehbJzYLQFpwbJmGkqbnW'
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
headers = {
"Accept": "application/json",
"xi-api-key": XI_API_KEY
}
data = {
"text": str(text),
"model_id": "eleven_multilingual_v2",
"voice_settings": {
"stability": 1.0,
"similarity_boost": 0.0,
"style": 0.60,
"use_speaker_boost": False
}
}
response = requests.post(tts_url, headers=headers, json=data, stream=True)
if response.ok:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
for chunk in response.iter_content(chunk_size=1024):
if chunk:
f.write(chunk)
audio_path = f.name
return audio_path # Return audio path for automatic playback
else:
print(f"Error generating audio: {response.text}")
return None
# Define the template for generating responses based on context
template = """I am a guide for Birmingham, Alabama. I can provide recommendations and insights about the city, including events and activities.
Ask your question directly, and I'll provide a precise and quick,short and crisp response in a conversational and straight-foreward way without any Greet.
Context:
{context}
Question: {question}
Answer concisely:"""
# Create a prompt object using the template
prompt = ChatPromptTemplate.from_template(template)
# Function to generate a response using the prompt and the context
def generate_response_with_prompt(context, question):
formatted_prompt = prompt.format(
context=context,
question=question
)
# Use the ChatOpenAI instance to generate a response directly from the formatted prompt
llm = ChatOpenAI(temperature=0, api_key=os.environ['OPENAI_API_KEY'])
response = llm(formatted_prompt)
return response.content.strip()
# Function to reset the state
def reset_state():
return None, "" # Reset the state and clear input text
# Define the function to generate a hybrid response using Neo4j and other retrieval methods
def retriever(question: str):
# Structured data retrieval from Neo4j
structured_query = f"""
CALL db.index.fulltext.queryNodes('entity', $query, {{limit: 2}})
YIELD node, score
RETURN node.id AS entity, node.text AS context, score
ORDER BY score DESC
LIMIT 2
"""
structured_data = graph.query(structured_query, {"query": generate_full_text_query(question)})
structured_response = "\n".join([f"{record['entity']}: {record['context']}" for record in structured_data])
# Unstructured data retrieval from vector store
unstructured_data = [el.page_content for el in vector_index.similarity_search(question)]
unstructured_response = "\n".join(unstructured_data)
# Combine structured and unstructured responses
combined_context = f"Structured data:\n{structured_response}\n\nUnstructured data:\n{unstructured_response}"
# Generate the final response using the prompt template
final_response = generate_response_with_prompt(combined_context, question)
return final_response
# Function to handle the entire audio query and response process
def process_audio_query(audio_input):
stream = None
_, transcription, _ = transcribe_function(stream, audio_input)
print(f"Transcription: {transcription}")
# Retrieve hybrid response using Neo4j and other methods
response_text = retriever(transcription)
print(f"Response: {response_text}")
# Generate audio from the response text
audio_path = generate_audio_elevenlabs(response_text)
return audio_path
# Function to handle submit button click
def on_submit(audio_input):
return process_audio_query(audio_input)
# Create Gradio interface for audio input, submit button, and output
with gr.Blocks() as interface:
audio_input = gr.Audio(sources="microphone", type="numpy", streaming=True,every=0.1)
submit_button = gr.Button("Submit")
audio_output = gr.Audio(type="filepath", autoplay=True)
submit_button.click(fn=on_submit, inputs=audio_input, outputs=audio_output)
# Launch the Gradio app
interface.launch()