Pijush2023's picture
Update app.py
35593b5 verified
raw
history blame
6.52 kB
import gradio as gr
import os
import logging
import requests
import tempfile
import torch
import numpy as np
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
from langchain_community.graphs import Neo4jGraph
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field
from typing import List
import time
# Neo4j Setup
graph = Neo4jGraph(
url="neo4j+s://6457770f.databases.neo4j.io",
username="neo4j",
password="Z10duoPkKCtENuOukw3eIlvl0xJWKtrVSr-_hGX1LQ4"
)
# Define entity extraction and retrieval functions
class Entities(BaseModel):
names: List[str] = Field(
..., description="All the person, organization, or business entities that appear in the text"
)
entity_prompt = ChatPromptTemplate.from_messages([
("system", "You are extracting organization and person entities from the text."),
("human", "Use the given format to extract information from the following input: {question}"),
])
chat_model = ChatOpenAI(temperature=0, model_name="gpt-4o", api_key=os.environ['OPENAI_API_KEY'])
entity_chain = entity_prompt | chat_model.with_structured_output(Entities)
def remove_lucene_chars(input: str) -> str:
return input.translate(str.maketrans({
"\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!",
"(": r"\(", ")": r"\)", "{": r"\{", "}": r"\}", "[": r"\[", "]": r"\]",
"^": r"\^", "~": r"\~", "*": r"\*", "?": r"\?", ":": r"\:", '"': r'\"',
";": r"\;", " ": r"\ "
}))
def generate_full_text_query(input: str) -> str:
full_text_query = ""
words = [el for el in remove_lucene_chars(input).split() if el]
for word in words[:-1]:
full_text_query += f" {word}~2 AND"
full_text_query += f" {words[-1]}~2"
return full_text_query.strip()
def structured_retriever(question: str) -> str:
result = ""
entities = entity_chain.invoke({"question": question})
for entity in entities.names:
response = graph.query(
"""CALL db.index.fulltext.queryNodes('entity', $query, {limit:2})
YIELD node,score
CALL {
WITH node
MATCH (node)-[r:!MENTIONS]->(neighbor)
RETURN node.id + ' - ' + type(r) + ' -> ' + neighbor.id AS output
UNION ALL
WITH node
MATCH (node)<-[r:!MENTIONS]-(neighbor)
RETURN neighbor.id + ' - ' + type(r) + ' -> ' + node.id AS output
}
RETURN output LIMIT 50
""",
{"query": generate_full_text_query(entity)},
)
result += "\n".join([el['output'] for el in response])
return result
# Function to generate audio with Eleven Labs TTS
def generate_audio_elevenlabs(text):
XI_API_KEY = os.environ['ELEVENLABS_API']
VOICE_ID = 'ehbJzYLQFpwbJmGkqbnW'
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
headers = {
"Accept": "application/json",
"xi-api-key": XI_API_KEY
}
data = {
"text": str(text),
"model_id": "eleven_multilingual_v2",
"voice_settings": {
"stability": 1.0,
"similarity_boost": 0.0,
"style": 0.60,
"use_speaker_boost": False
}
}
try:
response = requests.post(tts_url, headers=headers, json=data, stream=True)
if response.ok:
# Create a proper temporary file for saving the audio response
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
for chunk in response.iter_content(chunk_size=1024):
if chunk:
f.write(chunk)
audio_path = f.name # Get the path of the saved audio file
logging.debug(f"Audio saved to {audio_path}")
return audio_path # Ensure the path is to a valid audio file
else:
logging.error(f"Error generating audio: {response.text}")
return None
except Exception as e:
logging.error(f"Exception in generating audio: {str(e)}")
return None
# Define the ASR model with Whisper
model_id = 'openai/whisper-large-v3'
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe_asr = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=15,
batch_size=16,
torch_dtype=torch_dtype,
device=device,
return_timestamps=True
)
# Function to handle audio input, transcribe, fetch from Neo4j, and generate audio response
def transcribe_and_respond(audio):
if audio is None:
return None, "No audio provided."
sr, y = audio
y = np.array(y).astype(np.float32)
# Transcribe the audio using Whisper
result = pipe_asr({"array": y, "sampling_rate": sr}, return_timestamps=False)
question = result.get("text", "")
# Retrieve information from Neo4j
response_text = structured_retriever(question) if question else "I didn't understand the question."
# Convert the response to audio using Eleven Labs TTS
audio_path = generate_audio_elevenlabs(response_text) if response_text else None
return audio_path, response_text
# Define the Gradio interface with only audio input and output
with gr.Blocks(theme="rawrsor1/Everforest") as demo:
with gr.Row():
audio_input = gr.Audio(
sources=["microphone"],
type='numpy',
label="Speak to Ask"
)
audio_output = gr.Audio(
label="Audio Response",
type="filepath",
autoplay=True,
interactive=False
)
# Submit button to process the audio input
submit_btn = gr.Button("Submit")
submit_btn.click(
fn=transcribe_and_respond,
inputs=audio_input,
outputs=[audio_output, gr.Textbox(label="Transcription")]
)
# Clear state interaction
gr.Button("Clear State").click(
fn=clear_transcription_state,
outputs=[audio_output],
api_name="api_clean_state"
)
# Launch the Gradio interface
demo.launch(show_error=True, share=True)