|
import gradio as gr |
|
import requests |
|
import os |
|
import time |
|
import re |
|
import logging |
|
import tempfile |
|
import folium |
|
import concurrent.futures |
|
import torch |
|
from PIL import Image |
|
from datetime import datetime |
|
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor |
|
from googlemaps import Client as GoogleMapsClient |
|
from gtts import gTTS |
|
from diffusers import StableDiffusionPipeline |
|
from langchain_openai import OpenAIEmbeddings, ChatOpenAI |
|
from langchain_pinecone import PineconeVectorStore |
|
from langchain.prompts import PromptTemplate |
|
from langchain.chains import RetrievalQA |
|
from langchain.chains.conversation.memory import ConversationBufferWindowMemory |
|
from huggingface_hub import login |
|
from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer |
|
from parler_tts import ParlerTTSForConditionalGeneration |
|
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed |
|
from scipy.io.wavfile import write as write_wav |
|
from pydub import AudioSegment |
|
from string import punctuation |
|
import librosa |
|
from pathlib import Path |
|
import torchaudio |
|
import numpy as np |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
|
|
|
|
|
|
from langchain.chains import GraphCypherQAChain |
|
from langchain_community.graphs import Neo4jGraph |
|
from langchain_community.document_loaders import HuggingFaceDatasetLoader |
|
from langchain_text_splitters import CharacterTextSplitter |
|
from langchain_experimental.graph_transformers import LLMGraphTransformer |
|
from langchain_core.prompts import ChatPromptTemplate |
|
from langchain_core.pydantic_v1 import BaseModel, Field |
|
from langchain_core.messages import AIMessage, HumanMessage |
|
from langchain_core.output_parsers import StrOutputParser |
|
from langchain_core.runnables import RunnableBranch, RunnableLambda, RunnableParallel, RunnablePassthrough |
|
from serpapi.google_search import GoogleSearch |
|
|
|
|
|
|
|
import os |
|
import re |
|
import tempfile |
|
import soundfile as sf |
|
from string import punctuation |
|
from pydub import AudioSegment |
|
from transformers import AutoTokenizer, AutoFeatureExtractor |
|
|
|
|
|
|
|
|
|
def get_current_date1(): |
|
return datetime.now().strftime("%Y-%m-%d") |
|
|
|
|
|
current_date1 = get_current_date1() |
|
|
|
|
|
|
|
|
|
os.environ['PYTORCH_USE_CUDA_DSA'] = '1' |
|
os.environ['CUDA_LAUNCH_BLOCKING'] = '1' |
|
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True' |
|
|
|
|
|
hf_token = os.getenv("HF_TOKEN") |
|
if hf_token is None: |
|
print("Please set your Hugging Face token in the environment variables.") |
|
else: |
|
login(token=hf_token) |
|
|
|
logging.basicConfig(level=logging.DEBUG) |
|
|
|
|
|
embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY']) |
|
|
|
|
|
|
|
|
|
|
|
def initialize_phi_model(): |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"microsoft/Phi-3.5-mini-instruct", |
|
device_map="cuda", |
|
torch_dtype="auto", |
|
trust_remote_code=True, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct") |
|
return pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
|
|
def initialize_gpt_model(): |
|
return ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o') |
|
|
|
def initialize_gpt4o_mini_model(): |
|
return ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o-mini') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
phi_pipe = initialize_phi_model() |
|
gpt_model = initialize_gpt_model() |
|
gpt4o_mini_model = initialize_gpt4o_mini_model() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gpt_embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY']) |
|
gpt_vectorstore = PineconeVectorStore(index_name="radarfinaldata08192024", embedding=gpt_embeddings) |
|
gpt_retriever = gpt_vectorstore.as_retriever(search_kwargs={'k': 5}) |
|
|
|
|
|
phi_embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY']) |
|
phi_vectorstore = PineconeVectorStore(index_name="phivector08252024", embedding=phi_embeddings) |
|
phi_retriever = phi_vectorstore.as_retriever(search_kwargs={'k': 5}) |
|
|
|
|
|
|
|
|
|
|
|
|
|
from pinecone import Pinecone |
|
pc = Pinecone(api_key=os.environ['PINECONE_API_KEY']) |
|
|
|
index_name = "radarfinaldata08192024" |
|
vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings) |
|
retriever = vectorstore.as_retriever(search_kwargs={'k': 5}) |
|
|
|
chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o') |
|
chat_model1 = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o-mini') |
|
conversational_memory = ConversationBufferWindowMemory( |
|
memory_key='chat_history', |
|
k=10, |
|
return_messages=True |
|
) |
|
|
|
|
|
def get_current_date(): |
|
return datetime.now().strftime("%B %d, %Y") |
|
|
|
current_date = get_current_date() |
|
|
|
template1 = f"""As an expert concierge in Birmingham, Alabama, known for being a helpful and renowned guide, I am here to assist you on this sunny bright day of {current_date}. Given the current weather conditions and date, I have access to a plethora of information regarding events, places,sports and activities in Birmingham that can enhance your experience. |
|
If you have any questions or need recommendations, feel free to ask. I have a wealth of knowledge of perennial events in Birmingham and can provide detailed information to ensure you make the most of your time here. Remember, I am here to assist you in any way possible. |
|
Now, let me guide you through some of the exciting events happening today in Birmingham, Alabama: |
|
Address: >>, Birmingham, AL |
|
Time: >>__ |
|
Date: >>__ |
|
Description: >>__ |
|
Address: >>, Birmingham, AL |
|
Time: >>__ |
|
Date: >>__ |
|
Description: >>__ |
|
Address: >>, Birmingham, AL |
|
Time: >>__ |
|
Date: >>__ |
|
Description: >>__ |
|
Address: >>, Birmingham, AL |
|
Time: >>__ |
|
Date: >>__ |
|
Description: >>__ |
|
Address: >>, Birmingham, AL |
|
Time: >>__ |
|
Date: >>__ |
|
Description: >>__ |
|
If you have any specific preferences or questions about these events or any other inquiries, please feel free to ask. Remember, I am here to ensure you have a memorable and enjoyable experience in Birmingham, AL. |
|
It was my pleasure! |
|
{{context}} |
|
Question: {{question}} |
|
Helpful Answer:""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template2 =f"""Hello there! As your friendly and knowledgeable guide here in Birmingham, Alabama . I'm here to help you discover the best experiences this beautiful city has to offer. It's a bright and sunny day today, {current_date}, and I’m excited to assist you with any insights or recommendations you need. |
|
Whether you're looking for local events, sports ,clubs,concerts etc or just a great place to grab a bite, I've got you covered.Keep your response casual, short and sweet for the quickest response.Don't reveal the location and give the response in a descriptive way, I'm here to help make your time in Birmingham unforgettable! |
|
"It’s always a pleasure to assist you!" |
|
{{context}} |
|
Question: {{question}} |
|
Helpful Answer:""" |
|
|
|
|
|
QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1) |
|
QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2) |
|
|
|
|
|
graph = Neo4jGraph(url="neo4j+s://6457770f.databases.neo4j.io", |
|
username="neo4j", |
|
password="Z10duoPkKCtENuOukw3eIlvl0xJWKtrVSr-_hGX1LQ4" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Entities(BaseModel): |
|
names: list[str] = Field(..., description="All the person, organization, or business entities that appear in the text") |
|
|
|
entity_prompt = ChatPromptTemplate.from_messages([ |
|
("system", "You are extracting organization and person entities from the text."), |
|
("human", "Use the given format to extract information from the following input: {question}"), |
|
]) |
|
|
|
entity_chain = entity_prompt | chat_model.with_structured_output(Entities) |
|
|
|
def remove_lucene_chars(input: str) -> str: |
|
return input.translate(str.maketrans({"\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!", |
|
"(": r"\(", ")": r"\)", "{": r"\{", "}": r"\}", "[": r"\[", "]": r"\]", |
|
"^": r"\^", "~": r"\~", "*": r"\*", "?": r"\?", ":": r"\:", '"': r'\"', |
|
";": r"\;", " ": r"\ "})) |
|
|
|
def generate_full_text_query(input: str) -> str: |
|
full_text_query = "" |
|
words = [el for el in remove_lucene_chars(input).split() if el] |
|
for word in words[:-1]: |
|
full_text_query += f" {word}~2 AND" |
|
full_text_query += f" {words[-1]}~2" |
|
return full_text_query.strip() |
|
|
|
def structured_retriever(question: str) -> str: |
|
result = "" |
|
entities = entity_chain.invoke({"question": question}) |
|
for entity in entities.names: |
|
response = graph.query( |
|
"""CALL db.index.fulltext.queryNodes('entity', $query, {limit:2}) |
|
YIELD node,score |
|
CALL { |
|
WITH node |
|
MATCH (node)-[r:!MENTIONS]->(neighbor) |
|
RETURN node.id + ' - ' + type(r) + ' -> ' + neighbor.id AS output |
|
UNION ALL |
|
WITH node |
|
MATCH (node)<-[r:!MENTIONS]-(neighbor) |
|
RETURN neighbor.id + ' - ' + type(r) + ' -> ' + node.id AS output |
|
} |
|
RETURN output LIMIT 50 |
|
""", |
|
{"query": generate_full_text_query(entity)}, |
|
) |
|
result += "\n".join([el['output'] for el in response]) |
|
return result |
|
|
|
def retriever_neo4j(question: str): |
|
structured_data = structured_retriever(question) |
|
logging.debug(f"Structured data: {structured_data}") |
|
return structured_data |
|
|
|
_template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question, |
|
in its original language. |
|
Chat History: |
|
{chat_history} |
|
Follow Up Input: {question} |
|
Standalone question:""" |
|
|
|
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template) |
|
|
|
def _format_chat_history(chat_history: list[tuple[str, str]]) -> list: |
|
buffer = [] |
|
for human, ai in chat_history: |
|
buffer.append(HumanMessage(content=human)) |
|
buffer.append(AIMessage(content=ai)) |
|
return buffer |
|
|
|
_search_query = RunnableBranch( |
|
( |
|
RunnableLambda(lambda x: bool(x.get("chat_history"))).with_config( |
|
run_name="HasChatHistoryCheck" |
|
), |
|
RunnablePassthrough.assign( |
|
chat_history=lambda x: _format_chat_history(x["chat_history"]) |
|
) |
|
| CONDENSE_QUESTION_PROMPT |
|
| ChatOpenAI(temperature=0, api_key=os.environ['OPENAI_API_KEY']) |
|
| StrOutputParser(), |
|
), |
|
RunnableLambda(lambda x : x["question"]), |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template = f"""As an expert concierge known for being helpful and a renowned guide for Birmingham, Alabama, I assist visitors in discovering the best that the city has to offer.I also assist the visitors about various sports and activities. Given today's sunny and bright weather on {current_date}, I am well-equipped to provide valuable insights and recommendations without revealing specific locations. I draw upon my extensive knowledge of the area, including perennial events and historical context. |
|
In light of this, how can I assist you today? Feel free to ask any questions or seek recommendations for your day in Birmingham. If there's anything specific you'd like to know or experience, please share, and I'll be glad to help. Remember, keep the question concise for a quick,short ,crisp and accurate response. |
|
"It was my pleasure!" |
|
{{context}} |
|
Question: {{question}} |
|
Helpful Answer:""" |
|
|
|
qa_prompt = ChatPromptTemplate.from_template(template) |
|
|
|
chain_neo4j = ( |
|
RunnableParallel( |
|
{ |
|
"context": _search_query | retriever_neo4j, |
|
"question": RunnablePassthrough(), |
|
} |
|
) |
|
| qa_prompt |
|
| chat_model |
|
| StrOutputParser() |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
phi_custom_template = """ |
|
<|system|> |
|
You are a helpful assistant who provides clear, organized, crisp and conversational responses about an events,concerts,sports and all other activities of Birmingham,Alabama .<|end|> |
|
<|user|> |
|
{context} |
|
Question: {question}<|end|> |
|
<|assistant|> |
|
Sure! Here's the information you requested: |
|
""" |
|
|
|
|
|
def generate_bot_response(history, choice, retrieval_mode, model_choice): |
|
if not history: |
|
return |
|
|
|
|
|
|
|
selected_model = chat_model if model_choice == "LM-1" else (chat_model1 if model_choice == "LM-3" else phi_pipe) |
|
|
|
|
|
response, addresses = generate_answer(history[-1][0], choice, retrieval_mode, selected_model) |
|
history[-1][1] = "" |
|
|
|
for character in response: |
|
history[-1][1] += character |
|
yield history |
|
time.sleep(0.05) |
|
|
|
yield history |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generate_tts_response(response, tts_choice): |
|
with concurrent.futures.ThreadPoolExecutor() as executor: |
|
if tts_choice == "Alpha": |
|
audio_future = executor.submit(generate_audio_elevenlabs, response) |
|
elif tts_choice == "Beta": |
|
audio_future = executor.submit(generate_audio_parler_tts, response) |
|
|
|
|
|
|
|
audio_path = audio_future.result() |
|
return audio_path |
|
|
|
|
|
|
|
|
|
|
|
import concurrent.futures |
|
|
|
def bot(history, choice, tts_choice, retrieval_mode, model_choice): |
|
|
|
response = "" |
|
|
|
|
|
with concurrent.futures.ThreadPoolExecutor() as executor: |
|
|
|
bot_future = executor.submit(generate_bot_response, history, choice, retrieval_mode, model_choice) |
|
|
|
|
|
for history_chunk in bot_future.result(): |
|
response = history_chunk[-1][1] |
|
yield history_chunk, None |
|
|
|
|
|
tts_future = executor.submit(generate_tts_response, response, tts_choice) |
|
|
|
|
|
audio_path = tts_future.result() |
|
|
|
|
|
yield history, audio_path |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generate_bot_response(history, choice, retrieval_mode, model_choice): |
|
if not history: |
|
return |
|
|
|
|
|
|
|
selected_model = chat_model if model_choice == "LM-1" else (chat_model1 if model_choice == "LM-3" else phi_pipe) |
|
|
|
|
|
response, addresses = generate_answer(history[-1][0], choice, retrieval_mode, selected_model) |
|
history[-1][1] = "" |
|
|
|
for character in response: |
|
history[-1][1] += character |
|
yield history |
|
time.sleep(0.05) |
|
|
|
yield history |
|
|
|
|
|
|
|
|
|
def generate_audio_after_text(response, tts_choice): |
|
|
|
with concurrent.futures.ThreadPoolExecutor() as executor: |
|
tts_future = executor.submit(generate_tts_response, response, tts_choice) |
|
audio_path = tts_future.result() |
|
return audio_path |
|
|
|
import re |
|
|
|
def clean_response(response_text): |
|
|
|
response_text = re.sub(r'<\|system\|>.*?<\|end\|>', '', response_text, flags=re.DOTALL) |
|
response_text = re.sub(r'<\|user\|>.*?<\|end\|>', '', response_text, flags=re.DOTALL) |
|
response_text = re.sub(r'<\|assistant\|>', '', response_text, flags=re.DOTALL) |
|
|
|
|
|
cleaned_response = response_text.strip() |
|
cleaned_response = re.sub(r'\s+', ' ', cleaned_response) |
|
|
|
|
|
cleaned_response = cleaned_response.replace('1.', '\n1.').replace('2.', '\n2.').replace('3.', '\n3.').replace('4.', '\n4.').replace('5.', '\n5.') |
|
|
|
return cleaned_response |
|
|
|
|
|
gpt4o_mini_template_details = f""" |
|
As a highly specialized assistant, I provide precise, detailed, and informative responses. On this bright day of {current_date}, I'm equipped to assist with all your queries about Birmingham, Alabama, offering detailed insights tailored to your needs. |
|
Given your request, here is the detailed information you're seeking: |
|
{{context}} |
|
Question: {{question}} |
|
Detailed Answer: |
|
""" |
|
|
|
|
|
|
|
import traceback |
|
|
|
def generate_answer(message, choice, retrieval_mode, selected_model): |
|
logging.debug(f"generate_answer called with choice: {choice}, retrieval_mode: {retrieval_mode}, and selected_model: {selected_model}") |
|
|
|
|
|
if selected_model == "LM-2": |
|
choice = None |
|
retrieval_mode = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
|
if choice == "Details" and selected_model == chat_model1: |
|
prompt_template = PromptTemplate(input_variables=["context", "question"], template=gpt4o_mini_template_details) |
|
elif choice == "Details": |
|
prompt_template = QA_CHAIN_PROMPT_1 |
|
elif choice == "Conversational": |
|
prompt_template = QA_CHAIN_PROMPT_2 |
|
else: |
|
prompt_template = QA_CHAIN_PROMPT_1 |
|
|
|
|
|
if "hotel" in message.lower() or "hotels" in message.lower() and "birmingham" in message.lower(): |
|
logging.debug("Handling hotel-related query") |
|
response = fetch_google_hotels() |
|
logging.debug(f"Hotel response: {response}") |
|
return response, extract_addresses(response) |
|
|
|
|
|
if "restaurant" in message.lower() or "restaurants" in message.lower() and "birmingham" in message.lower(): |
|
logging.debug("Handling restaurant-related query") |
|
response = fetch_yelp_restaurants() |
|
logging.debug(f"Restaurant response: {response}") |
|
return response, extract_addresses(response) |
|
|
|
|
|
if "flight" in message.lower() or "flights" in message.lower() and "birmingham" in message.lower(): |
|
logging.debug("Handling flight-related query") |
|
response = fetch_google_flights() |
|
logging.debug(f"Flight response: {response}") |
|
return response, extract_addresses(response) |
|
|
|
|
|
if retrieval_mode == "VDB": |
|
logging.debug("Using VDB retrieval mode") |
|
if selected_model == chat_model: |
|
logging.debug("Selected model: LM-1") |
|
retriever = gpt_retriever |
|
context = retriever.get_relevant_documents(message) |
|
logging.debug(f"Retrieved context: {context}") |
|
|
|
prompt = prompt_template.format(context=context, question=message) |
|
logging.debug(f"Generated prompt: {prompt}") |
|
|
|
qa_chain = RetrievalQA.from_chain_type( |
|
llm=chat_model, |
|
chain_type="stuff", |
|
retriever=retriever, |
|
chain_type_kwargs={"prompt": prompt_template} |
|
) |
|
response = qa_chain({"query": message}) |
|
logging.debug(f"LM-1 response: {response}") |
|
return response['result'], extract_addresses(response['result']) |
|
|
|
elif selected_model == chat_model1: |
|
logging.debug("Selected model: LM-3") |
|
retriever = gpt_retriever |
|
context = retriever.get_relevant_documents(message) |
|
logging.debug(f"Retrieved context: {context}") |
|
|
|
prompt = prompt_template.format(context=context, question=message) |
|
logging.debug(f"Generated prompt: {prompt}") |
|
|
|
qa_chain = RetrievalQA.from_chain_type( |
|
llm=chat_model1, |
|
chain_type="stuff", |
|
retriever=retriever, |
|
chain_type_kwargs={"prompt": prompt_template} |
|
) |
|
response = qa_chain({"query": message}) |
|
logging.debug(f"LM-3 response: {response}") |
|
return response['result'], extract_addresses(response['result']) |
|
|
|
|
|
|
|
elif selected_model == phi_pipe: |
|
logging.debug("Selected model: LM-2") |
|
retriever = phi_retriever |
|
context_documents = retriever.get_relevant_documents(message) |
|
context = "\n".join([doc.page_content for doc in context_documents]) |
|
logging.debug(f"Retrieved context for LM-2: {context}") |
|
|
|
|
|
prompt = phi_custom_template.format(context=context, question=message) |
|
logging.debug(f"Generated LM-2 prompt: {prompt}") |
|
|
|
response = selected_model(prompt, **{ |
|
"max_new_tokens": 400, |
|
"return_full_text": True, |
|
"temperature": 0.7, |
|
"do_sample": True, |
|
}) |
|
|
|
if response: |
|
generated_text = response[0]['generated_text'] |
|
logging.debug(f"LM-2 Response: {generated_text}") |
|
cleaned_response = clean_response(generated_text) |
|
return cleaned_response, extract_addresses(cleaned_response) |
|
else: |
|
logging.error("LM-2 did not return any response.") |
|
return "No response generated.", [] |
|
|
|
elif retrieval_mode == "KGF": |
|
logging.debug("Using KGF retrieval mode") |
|
response = chain_neo4j.invoke({"question": message}) |
|
logging.debug(f"KGF response: {response}") |
|
return response, extract_addresses(response) |
|
else: |
|
logging.error("Invalid retrieval mode selected.") |
|
return "Invalid retrieval mode selected.", [] |
|
|
|
except Exception as e: |
|
logging.error(f"Error in generate_answer: {str(e)}") |
|
logging.error(traceback.format_exc()) |
|
return "Sorry, I encountered an error while processing your request.", [] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def add_message(history, message): |
|
history.append((message, None)) |
|
return history, gr.Textbox(value="", interactive=True, show_label=False) |
|
|
|
def print_like_dislike(x: gr.LikeData): |
|
print(x.index, x.value, x.liked) |
|
|
|
def extract_addresses(response): |
|
if not isinstance(response, str): |
|
response = str(response) |
|
address_patterns = [ |
|
r'([A-Z].*,\sBirmingham,\sAL\s\d{5})', |
|
r'(\d{4}\s.*,\sBirmingham,\sAL\s\d{5})', |
|
r'([A-Z].*,\sAL\s\d{5})', |
|
r'([A-Z].*,.*\sSt,\sBirmingham,\sAL\s\d{5})', |
|
r'([A-Z].*,.*\sStreets,\sBirmingham,\sAL\s\d{5})', |
|
r'(\d{2}.*\sStreets)', |
|
r'([A-Z].*\s\d{2},\sBirmingham,\sAL\s\d{5})', |
|
r'([a-zA-Z]\s Birmingham)', |
|
r'([a-zA-Z].*,\sBirmingham,\sAL)', |
|
r'(.*),(Birmingham, AL,USA)$' |
|
r'(^Birmingham,AL$)', |
|
r'((.*)(Stadium|Field),.*,\sAL$)', |
|
r'((.*)(Stadium|Field),.*,\sFL$)', |
|
r'((.*)(Stadium|Field),.*,\sMS$)', |
|
r'((.*)(Stadium|Field),.*,\sAR$)', |
|
r'((.*)(Stadium|Field),.*,\sKY$)', |
|
r'((.*)(Stadium|Field),.*,\sTN$)', |
|
r'((.*)(Stadium|Field),.*,\sLA$)', |
|
r'((.*)(Stadium|Field),.*,\sFL$)' |
|
|
|
] |
|
addresses = [] |
|
for pattern in address_patterns: |
|
addresses.extend(re.findall(pattern, response)) |
|
return addresses |
|
|
|
all_addresses = [] |
|
|
|
def generate_map(location_names): |
|
global all_addresses |
|
all_addresses.extend(location_names) |
|
|
|
api_key = os.environ['GOOGLEMAPS_API_KEY'] |
|
gmaps = GoogleMapsClient(key=api_key) |
|
|
|
m = folium.Map(location=[33.5175, -86.809444], zoom_start=12) |
|
|
|
for location_name in all_addresses: |
|
geocode_result = gmaps.geocode(location_name) |
|
if geocode_result: |
|
location = geocode_result[0]['geometry']['location'] |
|
folium.Marker( |
|
[location['lat'], location['lng']], |
|
tooltip=f"{geocode_result[0]['formatted_address']}" |
|
).add_to(m) |
|
|
|
map_html = m._repr_html_() |
|
return map_html |
|
|
|
|
|
|
|
import spaces |
|
import gradio as gr |
|
import torch |
|
from PIL import Image |
|
from diffusers import DiffusionPipeline |
|
import random |
|
|
|
|
|
base_model = "black-forest-labs/FLUX.1-dev" |
|
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16) |
|
|
|
lora_repo = "XLabs-AI/flux-RealismLora" |
|
trigger_word = "" |
|
pipe.load_lora_weights(lora_repo) |
|
|
|
pipe.to("cuda") |
|
|
|
MAX_SEED = 2**32-1 |
|
|
|
|
|
hardcoded_prompt_1 = "A high quality cinematic image for Toyota Truck in Birmingham skyline shot in the style of Michael Mann" |
|
hardcoded_prompt_2 = "A high quality cinematic image for Alabama Quarterback close up emotional shot in the style of Michael Mann" |
|
hardcoded_prompt_3 = "A high quality cinematic image for Taylor Swift concert in Birmingham skyline style of Michael Mann" |
|
|
|
def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)): |
|
|
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
generator = torch.Generator(device="cuda").manual_seed(seed) |
|
|
|
|
|
progress(0, "Starting image generation...") |
|
|
|
|
|
for i in range(1, steps + 1): |
|
|
|
if i % (steps // 10) == 0: |
|
progress(i / steps * 100, f"Processing step {i} of {steps}...") |
|
|
|
|
|
image = pipe( |
|
prompt=f"{prompt} {trigger_word}", |
|
num_inference_steps=steps, |
|
guidance_scale=cfg_scale, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
joint_attention_kwargs={"scale": lora_scale}, |
|
).images[0] |
|
|
|
|
|
progress(100, "Completed!") |
|
|
|
yield image, seed |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def fetch_local_news(): |
|
api_key = os.environ['SERP_API'] |
|
url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}' |
|
response = requests.get(url) |
|
if response.status_code == 200: |
|
results = response.json().get("news_results", []) |
|
news_html = """ |
|
<h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Birmingham Today</h2> |
|
<style> |
|
.news-item { |
|
font-family: 'Verdana', sans-serif; |
|
color: #333; |
|
background-color: #f0f8ff; |
|
margin-bottom: 15px; |
|
padding: 10px; |
|
border-radius: 5px; |
|
transition: box-shadow 0.3s ease, background-color 0.3s ease; |
|
font-weight: bold; |
|
} |
|
.news-item:hover { |
|
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); |
|
background-color: #e6f7ff; |
|
} |
|
.news-item a { |
|
color: #1E90FF; |
|
text-decoration: none; |
|
font-weight: bold; |
|
} |
|
.news-item a:hover { |
|
text-decoration: underline; |
|
} |
|
.news-preview { |
|
position: absolute; |
|
display: none; |
|
border: 1px solid #ccc; |
|
border-radius: 5px; |
|
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2); |
|
background-color: white; |
|
z-index: 1000; |
|
max-width: 300px; |
|
padding: 10px; |
|
font-family: 'Verdana', sans-serif; |
|
color: #333; |
|
} |
|
</style> |
|
<script> |
|
function showPreview(event, previewContent) { |
|
var previewBox = document.getElementById('news-preview'); |
|
previewBox.innerHTML = previewContent; |
|
previewBox.style.left = event.pageX + 'px'; |
|
previewBox.style.top = event.pageY + 'px'; |
|
previewBox.style.display = 'block'; |
|
} |
|
function hidePreview() { |
|
var previewBox = document.getElementById('news-preview'); |
|
previewBox.style.display = 'none'; |
|
} |
|
</script> |
|
<div id="news-preview" class="news-preview"></div> |
|
""" |
|
for index, result in enumerate(results[:7]): |
|
title = result.get("title", "No title") |
|
link = result.get("link", "#") |
|
snippet = result.get("snippet", "") |
|
news_html += f""" |
|
<div class="news-item" onmouseover="showPreview(event, '{snippet}')" onmouseout="hidePreview()"> |
|
<a href='{link}' target='_blank'>{index + 1}. {title}</a> |
|
<p>{snippet}</p> |
|
</div> |
|
""" |
|
return news_html |
|
else: |
|
return "<p>Failed to fetch local news</p>" |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor |
|
|
|
model_id = 'openai/whisper-large-v3' |
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 |
|
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device) |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True) |
|
|
|
base_audio_drive = "/data/audio" |
|
|
|
|
|
|
|
def transcribe_function(stream, new_chunk): |
|
try: |
|
sr, y = new_chunk[0], new_chunk[1] |
|
except TypeError: |
|
print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}") |
|
return stream, "", None |
|
|
|
y = y.astype(np.float32) / np.max(np.abs(y)) |
|
|
|
if stream is not None: |
|
stream = np.concatenate([stream, y]) |
|
else: |
|
stream = y |
|
|
|
result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False) |
|
|
|
full_text = result.get("text","") |
|
|
|
return stream, full_text, result |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def update_map_with_response(history): |
|
if not history: |
|
return "" |
|
response = history[-1][1] |
|
addresses = extract_addresses(response) |
|
return generate_map(addresses) |
|
|
|
def clear_textbox(): |
|
return "" |
|
|
|
def show_map_if_details(history, choice): |
|
if choice in ["Details", "Conversational"]: |
|
return gr.update(visible=True), update_map_with_response(history) |
|
else: |
|
return gr.update(visible(False), "") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generate_audio_elevenlabs(text): |
|
XI_API_KEY = os.environ['ELEVENLABS_API'] |
|
VOICE_ID = 'd9MIrwLnvDeH7aZb61E9' |
|
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream" |
|
headers = { |
|
"Accept": "application/json", |
|
"xi-api-key": XI_API_KEY |
|
} |
|
data = { |
|
"text": str(text), |
|
"model_id": "eleven_multilingual_v2", |
|
"voice_settings": { |
|
"stability": 1.0, |
|
"similarity_boost": 0.0, |
|
"style": 0.60, |
|
"use_speaker_boost": False |
|
} |
|
} |
|
response = requests.post(tts_url, headers=headers, json=data, stream=True) |
|
if response.ok: |
|
audio_segments = [] |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f: |
|
for chunk in response.iter_content(chunk_size=1024): |
|
if chunk: |
|
f.write(chunk) |
|
audio_segments.append(chunk) |
|
temp_audio_path = f.name |
|
|
|
|
|
combined_audio = AudioSegment.from_file(temp_audio_path, format="mp3") |
|
combined_audio_path = os.path.join(tempfile.gettempdir(), "elevenlabs_combined_audio.mp3") |
|
combined_audio.export(combined_audio_path, format="mp3") |
|
|
|
logging.debug(f"Audio saved to {combined_audio_path}") |
|
return combined_audio_path |
|
else: |
|
logging.error(f"Error generating audio: {response.text}") |
|
return None |
|
|
|
|
|
|
|
|
|
|
|
|
|
import concurrent.futures |
|
import tempfile |
|
import os |
|
import numpy as np |
|
import logging |
|
from queue import Queue |
|
from threading import Thread |
|
from scipy.io.wavfile import write as write_wav |
|
from parler_tts import ParlerTTSForConditionalGeneration, ParlerTTSStreamer |
|
from transformers import AutoTokenizer |
|
|
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
|
|
repo_id = "parler-tts/parler-tts-mini-v1" |
|
|
|
def generate_audio_parler_tts(text): |
|
description = "A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up." |
|
chunk_size_in_s = 0.5 |
|
|
|
|
|
parler_tokenizer = AutoTokenizer.from_pretrained(repo_id) |
|
parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device) |
|
sampling_rate = parler_model.audio_encoder.config.sampling_rate |
|
frame_rate = parler_model.audio_encoder.config.frame_rate |
|
|
|
def generate(text, description, play_steps_in_s=0.5): |
|
play_steps = int(frame_rate * play_steps_in_s) |
|
streamer = ParlerTTSStreamer(parler_model, device=device, play_steps=play_steps) |
|
|
|
inputs = parler_tokenizer(description, return_tensors="pt").to(device) |
|
prompt = parler_tokenizer(text, return_tensors="pt").to(device) |
|
|
|
generation_kwargs = dict( |
|
input_ids=inputs.input_ids, |
|
prompt_input_ids=prompt.input_ids, |
|
attention_mask=inputs.attention_mask, |
|
prompt_attention_mask=prompt.attention_mask, |
|
streamer=streamer, |
|
do_sample=True, |
|
temperature=1.0, |
|
min_new_tokens=10, |
|
) |
|
|
|
thread = Thread(target=parler_model.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
|
|
for new_audio in streamer: |
|
if new_audio.shape[0] == 0: |
|
break |
|
|
|
yield sampling_rate, new_audio |
|
|
|
audio_segments = [] |
|
for (sampling_rate, audio_chunk) in generate(text, description, chunk_size_in_s): |
|
audio_segments.append(audio_chunk) |
|
|
|
temp_audio_path = os.path.join(tempfile.gettempdir(), f"parler_tts_audio_chunk_{len(audio_segments)}.wav") |
|
write_wav(temp_audio_path, sampling_rate, audio_chunk.astype(np.float32)) |
|
logging.debug(f"Saved chunk to {temp_audio_path}") |
|
|
|
|
|
|
|
combined_audio = np.concatenate(audio_segments) |
|
combined_audio_path = os.path.join(tempfile.gettempdir(), "parler_tts_combined_audio_stream.wav") |
|
|
|
write_wav(combined_audio_path, sampling_rate, combined_audio.astype(np.float32)) |
|
|
|
logging.debug(f"Combined audio saved to {combined_audio_path}") |
|
return combined_audio_path |
|
|
|
|
|
def fetch_local_events(): |
|
api_key = os.environ['SERP_API'] |
|
url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}' |
|
response = requests.get(url) |
|
if response.status_code == 200: |
|
events_results = response.json().get("events_results", []) |
|
events_html = """ |
|
<h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2> |
|
<style> |
|
table { |
|
font-family: 'Verdana', sans-serif; |
|
color: #333; |
|
border-collapse: collapse; |
|
width: 100%; |
|
} |
|
th, td { |
|
border: 1px solid #fff !important; |
|
padding: 8px; |
|
} |
|
th { |
|
background-color: #f2f2f2; |
|
color: #333; |
|
text-align: left; |
|
} |
|
tr:hover { |
|
background-color: #f5f5f5; |
|
} |
|
.event-link { |
|
color: #1E90FF; |
|
text-decoration: none; |
|
} |
|
.event-link:hover { |
|
text-decoration: underline; |
|
} |
|
</style> |
|
<table> |
|
<tr> |
|
<th>Title</th> |
|
<th>Date and Time</th> |
|
<th>Location</th> |
|
</tr> |
|
""" |
|
for event in events_results: |
|
title = event.get("title", "No title") |
|
date_info = event.get("date", {}) |
|
date = f"{date_info.get('start_date', '')} {date_info.get('when', '')}".replace("{", "").replace("}", "") |
|
location = event.get("address", "No location") |
|
if isinstance(location, list): |
|
location = " ".join(location) |
|
location = location.replace("[", "").replace("]", "") |
|
link = event.get("link", "#") |
|
events_html += f""" |
|
<tr> |
|
<td><a class='event-link' href='{link}' target='_blank'>{title}</a></td> |
|
<td>{date}</td> |
|
<td>{location}</td> |
|
</tr> |
|
""" |
|
events_html += "</table>" |
|
return events_html |
|
else: |
|
return "<p>Failed to fetch local events</p>" |
|
|
|
def get_weather_icon(condition): |
|
condition_map = { |
|
"Clear": "c01d", |
|
"Partly Cloudy": "c02d", |
|
"Cloudy": "c03d", |
|
"Overcast": "c04d", |
|
"Mist": "a01d", |
|
"Patchy rain possible": "r01d", |
|
"Light rain": "r02d", |
|
"Moderate rain": "r03d", |
|
"Heavy rain": "r04d", |
|
"Snow": "s01d", |
|
"Thunderstorm": "t01d", |
|
"Fog": "a05d", |
|
} |
|
return condition_map.get(condition, "c04d") |
|
|
|
def fetch_local_weather(): |
|
try: |
|
api_key = os.environ['WEATHER_API'] |
|
url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/birmingham?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}' |
|
response = requests.get(url) |
|
response.raise_for_status() |
|
jsonData = response.json() |
|
|
|
current_conditions = jsonData.get("currentConditions", {}) |
|
temp_celsius = current_conditions.get("temp", "N/A") |
|
|
|
if temp_celsius != "N/A": |
|
temp_fahrenheit = int((temp_celsius * 9/5) + 32) |
|
else: |
|
temp_fahrenheit = "N/A" |
|
|
|
condition = current_conditions.get("conditions", "N/A") |
|
humidity = current_conditions.get("humidity", "N/A") |
|
|
|
weather_html = f""" |
|
<div class="weather-theme"> |
|
<h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2> |
|
<div class="weather-content"> |
|
<div class="weather-icon"> |
|
<img src="https://www.weatherbit.io/static/img/icons/{get_weather_icon(condition)}.png" alt="{condition}" style="width: 100px; height: 100px;"> |
|
</div> |
|
<div class="weather-details"> |
|
<p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Temperature: {temp_fahrenheit}°F</p> |
|
<p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Condition: {condition}</p> |
|
<p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Humidity: {humidity}%</p> |
|
</div> |
|
</div> |
|
</div> |
|
<style> |
|
.weather-theme {{ |
|
animation: backgroundAnimation 10s infinite alternate; |
|
border-radius: 10px; |
|
padding: 10px; |
|
margin-bottom: 15px; |
|
background: linear-gradient(45deg, #ffcc33, #ff6666, #ffcc33, #ff6666); |
|
background-size: 400% 400%; |
|
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); |
|
transition: box-shadow 0.3s ease, background-color 0.3s ease; |
|
}} |
|
.weather-theme:hover {{ |
|
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2); |
|
background-position: 100% 100%; |
|
}} |
|
@keyframes backgroundAnimation {{ |
|
0% {{ background-position: 0% 50%; }} |
|
100% {{ background-position: 100% 50%; }} |
|
}} |
|
.weather-content {{ |
|
display: flex; |
|
align-items: center; |
|
}} |
|
.weather-icon {{ |
|
flex: 1; |
|
}} |
|
.weather-details {{ |
|
flex 3; |
|
}} |
|
</style> |
|
""" |
|
return weather_html |
|
except requests.exceptions.RequestException as e: |
|
return f"<p>Failed to fetch local weather: {e}</p>" |
|
|
|
|
|
def handle_retrieval_mode_change(choice): |
|
if choice == "KGF": |
|
return gr.update(interactive=False), gr.update(interactive=False) |
|
else: |
|
return gr.update(interactive=True), gr.update(interactive=True) |
|
|
|
|
|
|
|
def handle_model_choice_change(selected_model): |
|
if selected_model == "LM-2": |
|
|
|
return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False) |
|
elif selected_model == "LM-1": |
|
|
|
return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True) |
|
else: |
|
|
|
return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def format_restaurant_hotel_info(name, link, location, phone, rating, reviews, snippet): |
|
return f""" |
|
{name} |
|
- Link: {link} |
|
- Location: {location} |
|
- Contact No: {phone} |
|
- Rating: {rating} stars ({reviews} reviews) |
|
- Snippet: {snippet} |
|
""" |
|
|
|
def fetch_yelp_restaurants(): |
|
|
|
intro_prompt = "Here are some of the top-rated restaurants in Birmingham, Alabama. I hope these suggestions help you find the perfect place to enjoy your meal:" |
|
|
|
params = { |
|
"engine": "yelp", |
|
"find_desc": "Restaurant", |
|
"find_loc": "Birmingham, AL, USA", |
|
"api_key": os.getenv("SERP_API") |
|
} |
|
|
|
search = GoogleSearch(params) |
|
results = search.get_dict() |
|
organic_results = results.get("organic_results", []) |
|
|
|
response_text = f"{intro_prompt}\n" |
|
|
|
for result in organic_results[:5]: |
|
name = result.get("title", "No name") |
|
rating = result.get("rating", "No rating") |
|
reviews = result.get("reviews", "No reviews") |
|
phone = result.get("phone", "Not Available") |
|
snippet = result.get("snippet", "Not Available") |
|
location = f"{name}, Birmingham, AL,USA" |
|
link = result.get("link", "#") |
|
|
|
response_text += format_restaurant_hotel_info(name, link, location, phone, rating, reviews, snippet) |
|
|
|
|
|
return response_text |
|
|
|
|
|
|
|
|
|
|
|
|
|
def format_hotel_info(name, link, location, rate_per_night, total_rate, description, check_in_time, check_out_time, amenities): |
|
return f""" |
|
{name} |
|
- Link: {link} |
|
- Location: {location} |
|
- Rate per Night: {rate_per_night} (Before taxes/fees: {total_rate}) |
|
- Check-in Time: {check_in_time} |
|
- Check-out Time: {check_out_time} |
|
- Amenities: {amenities} |
|
- Description: {description} |
|
""" |
|
|
|
def fetch_google_hotels(query="Birmingham Hotel", check_in=current_date1, check_out="2024-09-02", adults=2): |
|
|
|
intro_prompt = "Here are some of the best hotels in Birmingham, Alabama, for your stay. Each of these options offers a unique experience, whether you're looking for luxury, comfort, or convenience:" |
|
|
|
params = { |
|
"engine": "google_hotels", |
|
"q": query, |
|
"check_in_date": check_in, |
|
"check_out_date": check_out, |
|
"adults": str(adults), |
|
"currency": "USD", |
|
"gl": "us", |
|
"hl": "en", |
|
"api_key": os.getenv("SERP_API") |
|
} |
|
|
|
search = GoogleSearch(params) |
|
results = search.get_dict() |
|
hotel_results = results.get("properties", []) |
|
|
|
hotel_info = f"{intro_prompt}\n" |
|
for hotel in hotel_results[:5]: |
|
name = hotel.get('name', 'No name') |
|
description = hotel.get('description', 'No description') |
|
link = hotel.get('link', '#') |
|
check_in_time = hotel.get('check_in_time', 'N/A') |
|
check_out_time = hotel.get('check_out_time', 'N/A') |
|
rate_per_night = hotel.get('rate_per_night', {}).get('lowest', 'N/A') |
|
before_taxes_fees = hotel.get('rate_per_night', {}).get('before_taxes_fees', 'N/A') |
|
total_rate = hotel.get('total_rate', {}).get('lowest', 'N/A') |
|
amenities = ", ".join(hotel.get('amenities', [])) if hotel.get('amenities') else "Not Available" |
|
|
|
location = f"{name}, Birmingham, AL,USA" |
|
|
|
hotel_info += format_hotel_info( |
|
name, |
|
link, |
|
location, |
|
rate_per_night, |
|
total_rate, |
|
description, |
|
check_in_time, |
|
check_out_time, |
|
amenities |
|
) |
|
|
|
|
|
return hotel_info |
|
|
|
|
|
|
|
|
|
def format_flight_info(flight_number, departure_airport, departure_time, arrival_airport, arrival_time, duration, airplane): |
|
return f""" |
|
Flight {flight_number} |
|
- Departure: {departure_airport} at {departure_time} |
|
- Arrival: {arrival_airport} at {arrival_time} |
|
- Duration: {duration} minutes |
|
- Airplane: {airplane} |
|
""" |
|
|
|
def fetch_google_flights(departure_id="JFK", arrival_id="BHM", outbound_date=current_date1, return_date="2024-08-20"): |
|
|
|
intro_prompt = "Here are some available flights from JFK to Birmingham, Alabama. These options provide a range of times and durations to fit your travel needs:" |
|
|
|
params = { |
|
"engine": "google_flights", |
|
"departure_id": departure_id, |
|
"arrival_id": arrival_id, |
|
"outbound_date": outbound_date, |
|
"return_date": return_date, |
|
"currency": "USD", |
|
"hl": "en", |
|
"api_key": os.getenv("SERP_API") |
|
} |
|
|
|
search = GoogleSearch(params) |
|
results = search.get_dict() |
|
|
|
|
|
best_flights = results.get('best_flights', []) |
|
flight_info = f"{intro_prompt}\n" |
|
|
|
|
|
for i, flight in enumerate(best_flights, start=1): |
|
for segment in flight.get('flights', []): |
|
departure_airport = segment.get('departure_airport', {}).get('name', 'Unknown Departure Airport') |
|
departure_time = segment.get('departure_airport', {}).get('time', 'Unknown Time') |
|
arrival_airport = segment.get('arrival_airport', {}).get('name', 'Unknown Arrival Airport') |
|
arrival_time = segment.get('arrival_airport', {}).get('time', 'Unknown Time') |
|
duration = segment.get('duration', 'Unknown Duration') |
|
airplane = segment.get('airplane', 'Unknown Airplane') |
|
|
|
|
|
flight_info += format_flight_info( |
|
flight_number=i, |
|
departure_airport=departure_airport, |
|
departure_time=departure_time, |
|
arrival_airport=arrival_airport, |
|
arrival_time=arrival_time, |
|
duration=duration, |
|
airplane=airplane |
|
) |
|
|
|
|
|
return flight_info |
|
|
|
|
|
examples = [ |
|
[ |
|
"What are the concerts in Birmingham?", |
|
], |
|
[ |
|
"what are some of the upcoming matches of crimson tide?", |
|
], |
|
[ |
|
"where from i will get a Hamburger?", |
|
], |
|
[ |
|
"What are some of the hotels at birmingham?", |
|
], |
|
[ |
|
"how can i connect the alexa to the radio?" |
|
], |
|
[ |
|
"What are some of the good clubs at birmingham?" |
|
], |
|
[ |
|
"How do I call the radio station?", |
|
], |
|
[ |
|
"What’s the spread?" |
|
], |
|
[ |
|
"What time is Crimson Tide Rewind?" |
|
], |
|
[ |
|
"What time is Alabama kick-off?" |
|
], |
|
[ |
|
"who are some of the popular players of crimson tide?" |
|
] |
|
] |
|
|
|
|
|
def insert_prompt(current_text, prompt): |
|
return prompt[0] if prompt else current_text |
|
|
|
|
|
|
|
with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo: |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
state = gr.State() |
|
|
|
chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False) |
|
choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational") |
|
retrieval_mode = gr.Radio(label="Retrieval Mode", choices=["VDB", "KGF"], value="VDB") |
|
model_choice = gr.Dropdown(label="Choose Model", choices=["LM-1", "LM-2", "LM-3"], value="LM-1") |
|
|
|
|
|
model_choice.change(fn=handle_model_choice_change, inputs=model_choice, outputs=[retrieval_mode, choice, choice]) |
|
|
|
gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown") |
|
|
|
chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!", placeholder="Hey Radar...!!") |
|
tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta"], value="Alpha") |
|
|
|
retriever_button = gr.Button("Retriever") |
|
|
|
clear_button = gr.Button("Clear") |
|
clear_button.click(lambda: [None, None], outputs=[chat_input, state]) |
|
|
|
gr.Markdown("<h1 style='color: red;'>Radar Map</h1>", elem_id="Map-Radar") |
|
location_output = gr.HTML() |
|
audio_output = gr.Audio(interactive=False, autoplay=True) |
|
|
|
def stop_audio(): |
|
audio_output.stop() |
|
return None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
retriever_sequence = ( |
|
retriever_button.click(fn=stop_audio, inputs=[], outputs=[audio_output], api_name="api_stop_audio_recording") |
|
.then(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="api_addprompt_chathistory") |
|
|
|
.then(fn=generate_bot_response, inputs=[chatbot, choice, retrieval_mode, model_choice], outputs=[chatbot], api_name="api_generate_bot_response") |
|
|
|
.then(fn=generate_tts_response, inputs=[chatbot, tts_choice], outputs=[audio_output], api_name="api_generate_tts_response") |
|
.then(fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="api_show_map_details") |
|
.then(fn=clear_textbox, inputs=[], outputs=[chat_input], api_name="api_clear_textbox") |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
chat_input.submit(fn=stop_audio, inputs=[], outputs=[audio_output], api_name="api_stop_audio_recording").then( |
|
fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="api_addprompt_chathistory" |
|
).then( |
|
|
|
fn=generate_bot_response, inputs=[chatbot, choice, retrieval_mode, model_choice], outputs=[chatbot], api_name="api_generate_bot_response" |
|
).then( |
|
|
|
fn=generate_tts_response, inputs=[chatbot, tts_choice], outputs=[audio_output], api_name="api_generate_tts_response" |
|
).then( |
|
fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="api_show_map_details" |
|
).then( |
|
fn=clear_textbox, inputs=[], outputs=[chat_input], api_name="api_clear_textbox" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', every=0.1) |
|
audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="api_voice_to_text") |
|
|
|
gr.Markdown("<h1 style='color: red;'>Example Prompts</h1>", elem_id="Example-Prompts") |
|
gr.Examples(examples=examples, fn=insert_prompt,inputs=chat_input, outputs=chat_input) |
|
|
|
with gr.Column(): |
|
weather_output = gr.HTML(value=fetch_local_weather()) |
|
news_output = gr.HTML(value=fetch_local_news()) |
|
events_output = gr.HTML(value=fetch_local_events()) |
|
|
|
|
|
with gr.Column(): |
|
|
|
|
|
image_output_1 = gr.Image(value=next(run_lora(hardcoded_prompt_1, 7.5, 50, True, 42, 512, 512, 0.5)), width=400, height=400) |
|
image_output_2 = gr.Image(value=next(run_lora(hardcoded_prompt_2, 7.5, 50, True, 42, 512, 512, 0.5)), width=400, height=400) |
|
image_output_3 = gr.Image(value=next(run_lora(hardcoded_prompt_3, 7.5, 50, True, 42, 512, 512, 0.5)), width=400, height=400) |
|
|
|
refresh_button = gr.Button("Refresh Images") |
|
refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
demo.queue() |
|
demo.launch(show_error=True) |