Pijush2023's picture
Update app.py
8ecf4e0 verified
raw
history blame
10.1 kB
import gradio as gr
import os
import logging
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import ChatOpenAI
from langchain_community.graphs import Neo4jGraph
from typing import List, Tuple
from pydantic import BaseModel, Field
from langchain_core.messages import AIMessage, HumanMessage
from langchain_core.runnables import (
RunnableBranch,
RunnableLambda,
RunnablePassthrough,
RunnableParallel,
)
from langchain_core.prompts.prompt import PromptTemplate
import requests
import tempfile
from langchain.memory import ConversationBufferWindowMemory
import time
conversational_memory = ConversationBufferWindowMemory(
memory_key='chat_history',
k=10,
return_messages=True
)
# Setup Neo4j
graph = Neo4jGraph(
url="neo4j+s://6457770f.databases.neo4j.io",
username="neo4j",
password="Z10duoPkKCtENuOukw3eIlvl0xJWKtrVSr-_hGX1LQ4"
)
# Define entity extraction and retrieval functions
class Entities(BaseModel):
names: List[str] = Field(
..., description="All the person, organization, or business entities that appear in the text"
)
entity_prompt = ChatPromptTemplate.from_messages([
("system", "You are extracting organization and person entities from the text."),
("human", "Use the given format to extract information from the following input: {question}"),
])
chat_model = ChatOpenAI(temperature=0, model_name="gpt-4o", api_key=os.environ['OPENAI_API_KEY'])
entity_chain = entity_prompt | chat_model.with_structured_output(Entities)
def remove_lucene_chars(input: str) -> str:
return input.translate(str.maketrans({
"\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!",
"(": r"\(", ")": r"\)", "{": r"\{", "}": r"\}", "[": r"\[", "]": r"\]",
"^": r"\^", "~": r"\~", "*": r"\*", "?": r"\?", ":": r"\:", '"': r'\"',
";": r"\;", " ": r"\ "
}))
def generate_full_text_query(input: str) -> str:
full_text_query = ""
words = [el for el in remove_lucene_chars(input).split() if el]
for word in words[:-1]:
full_text_query += f" {word}~2 AND"
full_text_query += f" {words[-1]}~2"
return full_text_query.strip()
def structured_retriever(question: str) -> str:
result = ""
entities = entity_chain.invoke({"question": question})
for entity in entities.names:
response = graph.query(
"""CALL db.index.fulltext.queryNodes('entity', $query, {limit:2})
YIELD node,score
CALL {
WITH node
MATCH (node)-[r:!MENTIONS]->(neighbor)
RETURN node.id + ' - ' + type(r) + ' -> ' + neighbor.id AS output
UNION ALL
WITH node
MATCH (node)<-[r:!MENTIONS]-(neighbor)
RETURN neighbor.id + ' - ' + type(r) + ' -> ' + node.id AS output
}
RETURN output LIMIT 50
""",
{"query": generate_full_text_query(entity)},
)
result += "\n".join([el['output'] for el in response])
return result
def retriever_neo4j(question: str):
structured_data = structured_retriever(question)
logging.debug(f"Structured data: {structured_data}")
return structured_data
# Setup for condensing the follow-up questions
_template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question,
in its original language.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:"""
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
def _format_chat_history(chat_history: list[tuple[str, str]]) -> list:
buffer = []
for human, ai in chat_history:
buffer.append(HumanMessage(content=human))
buffer.append(AIMessage(content=ai))
return buffer
_search_query = RunnableBranch(
(
RunnableLambda(lambda x: bool(x.get("chat_history"))).with_config(
run_name="HasChatHistoryCheck"
),
RunnablePassthrough.assign(
chat_history=lambda x: _format_chat_history(x["chat_history"])
)
| CONDENSE_QUESTION_PROMPT
| ChatOpenAI(temperature=0, api_key=os.environ['OPENAI_API_KEY'])
| StrOutputParser(),
),
RunnableLambda(lambda x: x["question"]),
)
template = """I am a guide for Birmingham, Alabama. I can provide recommendations and insights about the city, including events and activities.
Ask your question directly, and I'll provide a precise and quick,short and crisp response in a conversational way without any Greet.
{context}
Question: {question}
Answer:"""
qa_prompt = ChatPromptTemplate.from_template(template)
# Define the chain for Neo4j-based retrieval and response generation
chain_neo4j = (
RunnableParallel(
{
"context": _search_query | retriever_neo4j,
"question": RunnablePassthrough(),
}
)
| qa_prompt
| chat_model
| StrOutputParser()
)
# Define the function to get the response
def get_response(question):
try:
return chain_neo4j.invoke({"question": question})
except Exception as e:
return f"Error: {str(e)}"
# Define the function to clear input and output
def clear_fields():
return [],"",None
# Function to generate audio with Eleven Labs TTS
def generate_audio_elevenlabs(text):
XI_API_KEY = os.environ['ELEVENLABS_API']
VOICE_ID = 'ehbJzYLQFpwbJmGkqbnW'
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
headers = {
"Accept": "application/json",
"xi-api-key": XI_API_KEY
}
data = {
"text": str(text),
"model_id": "eleven_multilingual_v2",
"voice_settings": {
"stability": 1.0,
"similarity_boost": 0.0,
"style": 0.60,
"use_speaker_boost": False
}
}
response = requests.post(tts_url, headers=headers, json=data, stream=True)
if response.ok:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
for chunk in response.iter_content(chunk_size=1024):
if chunk:
f.write(chunk)
audio_path = f.name
logging.debug(f"Audio saved to {audio_path}")
return audio_path # Return audio path for automatic playback
else:
logging.error(f"Error generating audio: {response.text}")
return None
# Function to add a user's message to the chat history and clear the input box
def add_message(history, message):
if message.strip():
history.append((message, None)) # Add the user's message to the chat history only if it's not empty
return history, "" # Clear the input box
# Define function to generate a streaming response
def chat_with_bot(messages):
user_message = messages[-1][0] # Get the last user message (input)
messages[-1] = (user_message, "") # Prepare the placeholder for the bot's response
response = get_response(user_message)
# Simulate streaming response by iterating over each character in the response
for character in response:
messages[-1] = (user_message, messages[-1][1] + character)
yield messages # Stream each character
time.sleep(0.05) # Adjust delay as needed for real-time effect
yield messages # Final yield to ensure the full response is displayed
# Function to generate audio with Eleven Labs TTS from the last bot response
def generate_audio_from_last_response(history):
# Get the most recent bot response from the chat history
if history and len(history) > 0:
recent_response = history[-1][1] # The second item in the tuple is the bot response text
if recent_response:
return generate_audio_elevenlabs(recent_response)
return None
# Define example prompts
examples = [
["What are some popular events in Birmingham?"],
["Who are the top players of the Crimson Tide?"],
["Where can I find a hamburger?"],
["What are some popular tourist attractions in Birmingham?"],
["What are some good clubs in Birmingham?"]
]
# Function to insert the prompt into the textbox when clicked
def insert_prompt(current_text, prompt):
return prompt[0] if prompt else current_text
# Create the Gradio Blocks interface
with gr.Blocks(theme="rawrsor1/Everforest") as demo:
chatbot = gr.Chatbot([], elem_id="RADAR", bubble_full_width=False)
with gr.Row():
with gr.Column():
question_input = gr.Textbox(label="Ask a Question", placeholder="Type your question here...")
with gr.Column():
audio_output = gr.Audio(label="Audio", type="filepath", interactive=False)
with gr.Row():
with gr.Column():
get_response_btn = gr.Button("Get Response")
with gr.Column():
generate_audio_btn = gr.Button("Generate Audio")
with gr.Column():
clean_btn = gr.Button("Clean")
with gr.Row():
with gr.Column():
gr.Markdown("<h1 style='color: red;'>Example Prompts</h1>", elem_id="Example-Prompts")
gr.Examples(examples=examples, fn=insert_prompt, inputs=question_input, outputs=question_input)
# Define interactions
# Define interactions for clicking the button
get_response_btn.click(fn=add_message, inputs=[chatbot, question_input], outputs=[chatbot, question_input])\
.then(fn=chat_with_bot, inputs=[chatbot], outputs=chatbot)
# Define interaction for hitting the Enter key
question_input.submit(fn=add_message, inputs=[chatbot, question_input], outputs=[chatbot, question_input])\
.then(fn=chat_with_bot, inputs=[chatbot], outputs=chatbot)
generate_audio_btn.click(fn=generate_audio_from_last_response, inputs=chatbot, outputs=audio_output)
clean_btn.click(fn=clear_fields, inputs=[], outputs=[chatbot, question_input, audio_output])
# Launch the Gradio interface
demo.launch(show_error=True)