Spaces:
Runtime error
Runtime error
Delete CHATTS/model/gpt.py
Browse files- CHATTS/model/gpt.py +0 -265
CHATTS/model/gpt.py
DELETED
@@ -1,265 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
3 |
-
|
4 |
-
import logging
|
5 |
-
from tqdm import tqdm
|
6 |
-
from einops import rearrange
|
7 |
-
from transformers.cache_utils import Cache
|
8 |
-
|
9 |
-
import torch
|
10 |
-
import torch.nn as nn
|
11 |
-
import torch.nn.functional as F
|
12 |
-
import torch.nn.utils.parametrize as P
|
13 |
-
from torch.nn.utils.parametrizations import weight_norm
|
14 |
-
from transformers import LlamaModel, LlamaConfig
|
15 |
-
|
16 |
-
|
17 |
-
class LlamaMLP(nn.Module):
|
18 |
-
def __init__(self, hidden_size, intermediate_size):
|
19 |
-
super().__init__()
|
20 |
-
self.hidden_size = hidden_size
|
21 |
-
self.intermediate_size = intermediate_size
|
22 |
-
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
23 |
-
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
24 |
-
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
25 |
-
self.act_fn = F.silu
|
26 |
-
|
27 |
-
def forward(self, x):
|
28 |
-
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
29 |
-
return down_proj
|
30 |
-
|
31 |
-
|
32 |
-
class GPT_warpper(nn.Module):
|
33 |
-
def __init__(
|
34 |
-
self,
|
35 |
-
gpt_config,
|
36 |
-
num_audio_tokens,
|
37 |
-
num_text_tokens,
|
38 |
-
num_vq=4,
|
39 |
-
**kwargs,
|
40 |
-
):
|
41 |
-
super().__init__()
|
42 |
-
|
43 |
-
self.logger = logging.getLogger(__name__)
|
44 |
-
self.gpt = self.build_model(gpt_config)
|
45 |
-
self.model_dim = self.gpt.config.hidden_size
|
46 |
-
|
47 |
-
self.num_vq = num_vq
|
48 |
-
self.emb_code = nn.ModuleList([nn.Embedding(num_audio_tokens, self.model_dim) for i in range(self.num_vq)])
|
49 |
-
self.emb_text = nn.Embedding(num_text_tokens, self.model_dim)
|
50 |
-
self.head_text = weight_norm(nn.Linear(self.model_dim, num_text_tokens, bias=False), name='weight')
|
51 |
-
self.head_code = nn.ModuleList([weight_norm(nn.Linear(self.model_dim, num_audio_tokens, bias=False), name='weight') for i in range(self.num_vq)])
|
52 |
-
|
53 |
-
def build_model(self, config):
|
54 |
-
|
55 |
-
configuration = LlamaConfig(**config)
|
56 |
-
model = LlamaModel(configuration)
|
57 |
-
del model.embed_tokens
|
58 |
-
|
59 |
-
return model
|
60 |
-
|
61 |
-
def get_emb(self, input_ids, text_mask, **kwargs):
|
62 |
-
|
63 |
-
emb_text = self.emb_text(input_ids[text_mask][:, 0])
|
64 |
-
|
65 |
-
emb_code = [self.emb_code[i](input_ids[~text_mask][:, i]) for i in range(self.num_vq)]
|
66 |
-
emb_code = torch.stack(emb_code, 2).sum(2)
|
67 |
-
|
68 |
-
emb = torch.zeros((input_ids.shape[:-1])+(emb_text.shape[-1],), device=emb_text.device, dtype=emb_text.dtype)
|
69 |
-
emb[text_mask] = emb_text
|
70 |
-
emb[~text_mask] = emb_code.to(emb.dtype)
|
71 |
-
|
72 |
-
return emb
|
73 |
-
|
74 |
-
def prepare_inputs_for_generation(
|
75 |
-
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs
|
76 |
-
):
|
77 |
-
# With static cache, the `past_key_values` is None
|
78 |
-
# TODO joao: standardize interface for the different Cache classes and remove of this if
|
79 |
-
has_static_cache = False
|
80 |
-
if past_key_values is None:
|
81 |
-
past_key_values = getattr(self.gpt.layers[0].self_attn, "past_key_value", None)
|
82 |
-
has_static_cache = past_key_values is not None
|
83 |
-
|
84 |
-
past_length = 0
|
85 |
-
if past_key_values is not None:
|
86 |
-
if isinstance(past_key_values, Cache):
|
87 |
-
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
|
88 |
-
max_cache_length = (
|
89 |
-
torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
|
90 |
-
if past_key_values.get_max_length() is not None
|
91 |
-
else None
|
92 |
-
)
|
93 |
-
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
|
94 |
-
# TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
|
95 |
-
else:
|
96 |
-
cache_length = past_length = past_key_values[0][0].shape[2]
|
97 |
-
max_cache_length = None
|
98 |
-
|
99 |
-
# Keep only the unprocessed tokens:
|
100 |
-
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
101 |
-
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
102 |
-
# input)
|
103 |
-
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
104 |
-
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
105 |
-
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
106 |
-
# input_ids based on the past_length.
|
107 |
-
elif past_length < input_ids.shape[1]:
|
108 |
-
input_ids = input_ids[:, past_length:]
|
109 |
-
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
110 |
-
|
111 |
-
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
112 |
-
if (
|
113 |
-
max_cache_length is not None
|
114 |
-
and attention_mask is not None
|
115 |
-
and cache_length + input_ids.shape[1] > max_cache_length
|
116 |
-
):
|
117 |
-
attention_mask = attention_mask[:, -max_cache_length:]
|
118 |
-
|
119 |
-
position_ids = kwargs.get("position_ids", None)
|
120 |
-
if attention_mask is not None and position_ids is None:
|
121 |
-
# create position_ids on the fly for batch generation
|
122 |
-
position_ids = attention_mask.long().cumsum(-1) - 1
|
123 |
-
position_ids.masked_fill_(attention_mask == 0, 1)
|
124 |
-
if past_key_values:
|
125 |
-
position_ids = position_ids[:, -input_ids.shape[1] :]
|
126 |
-
|
127 |
-
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
128 |
-
if inputs_embeds is not None and past_key_values is None:
|
129 |
-
model_inputs = {"inputs_embeds": inputs_embeds}
|
130 |
-
else:
|
131 |
-
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
132 |
-
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
|
133 |
-
# TODO: use `next_tokens` directly instead.
|
134 |
-
model_inputs = {"input_ids": input_ids.contiguous()}
|
135 |
-
|
136 |
-
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
|
137 |
-
if cache_position is None:
|
138 |
-
cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
|
139 |
-
else:
|
140 |
-
cache_position = cache_position[-input_length:]
|
141 |
-
|
142 |
-
if has_static_cache:
|
143 |
-
past_key_values = None
|
144 |
-
|
145 |
-
model_inputs.update(
|
146 |
-
{
|
147 |
-
"position_ids": position_ids,
|
148 |
-
"cache_position": cache_position,
|
149 |
-
"past_key_values": past_key_values,
|
150 |
-
"use_cache": kwargs.get("use_cache"),
|
151 |
-
"attention_mask": attention_mask,
|
152 |
-
}
|
153 |
-
)
|
154 |
-
return model_inputs
|
155 |
-
|
156 |
-
def generate(
|
157 |
-
self,
|
158 |
-
emb,
|
159 |
-
inputs_ids,
|
160 |
-
temperature,
|
161 |
-
eos_token,
|
162 |
-
attention_mask = None,
|
163 |
-
max_new_token = 2048,
|
164 |
-
min_new_token = 0,
|
165 |
-
LogitsWarpers = [],
|
166 |
-
LogitsProcessors = [],
|
167 |
-
infer_text=False,
|
168 |
-
return_attn=False,
|
169 |
-
return_hidden=False,
|
170 |
-
):
|
171 |
-
|
172 |
-
with torch.no_grad():
|
173 |
-
|
174 |
-
attentions = []
|
175 |
-
hiddens = []
|
176 |
-
|
177 |
-
start_idx, end_idx = inputs_ids.shape[1], torch.zeros(inputs_ids.shape[0], device=inputs_ids.device, dtype=torch.long)
|
178 |
-
finish = torch.zeros(inputs_ids.shape[0], device=inputs_ids.device).bool()
|
179 |
-
|
180 |
-
temperature = temperature[None].expand(inputs_ids.shape[0], -1)
|
181 |
-
temperature = rearrange(temperature, "b n -> (b n) 1")
|
182 |
-
|
183 |
-
attention_mask_cache = torch.ones((inputs_ids.shape[0], inputs_ids.shape[1]+max_new_token,), dtype=torch.bool, device=inputs_ids.device)
|
184 |
-
if attention_mask is not None:
|
185 |
-
attention_mask_cache[:, :attention_mask.shape[1]] = attention_mask
|
186 |
-
|
187 |
-
for i in tqdm(range(max_new_token)):
|
188 |
-
|
189 |
-
model_input = self.prepare_inputs_for_generation(inputs_ids,
|
190 |
-
outputs.past_key_values if i!=0 else None,
|
191 |
-
attention_mask_cache[:, :inputs_ids.shape[1]], use_cache=True)
|
192 |
-
|
193 |
-
if i == 0:
|
194 |
-
model_input['inputs_embeds'] = emb
|
195 |
-
else:
|
196 |
-
if infer_text:
|
197 |
-
model_input['inputs_embeds'] = self.emb_text(model_input['input_ids'][:,:,0])
|
198 |
-
else:
|
199 |
-
code_emb = [self.emb_code[i](model_input['input_ids'][:,:,i]) for i in range(self.num_vq)]
|
200 |
-
model_input['inputs_embeds'] = torch.stack(code_emb, 3).sum(3)
|
201 |
-
|
202 |
-
model_input['input_ids'] = None
|
203 |
-
outputs = self.gpt.forward(**model_input, output_attentions=return_attn)
|
204 |
-
attentions.append(outputs.attentions)
|
205 |
-
hidden_states = outputs[0] # 🐻
|
206 |
-
if return_hidden:
|
207 |
-
hiddens.append(hidden_states[:, -1])
|
208 |
-
|
209 |
-
with P.cached():
|
210 |
-
if infer_text:
|
211 |
-
logits = self.head_text(hidden_states)
|
212 |
-
else:
|
213 |
-
logits = torch.stack([self.head_code[i](hidden_states) for i in range(self.num_vq)], 3)
|
214 |
-
|
215 |
-
logits = logits[:, -1].float()
|
216 |
-
|
217 |
-
if not infer_text:
|
218 |
-
logits = rearrange(logits, "b c n -> (b n) c")
|
219 |
-
logits_token = rearrange(inputs_ids[:, start_idx:], "b c n -> (b n) c")
|
220 |
-
else:
|
221 |
-
logits_token = inputs_ids[:, start_idx:, 0]
|
222 |
-
|
223 |
-
logits = logits / temperature
|
224 |
-
|
225 |
-
for logitsProcessors in LogitsProcessors:
|
226 |
-
logits = logitsProcessors(logits_token, logits)
|
227 |
-
|
228 |
-
for logitsWarpers in LogitsWarpers:
|
229 |
-
logits = logitsWarpers(logits_token, logits)
|
230 |
-
|
231 |
-
if i < min_new_token:
|
232 |
-
logits[:, eos_token] = -torch.inf
|
233 |
-
|
234 |
-
scores = F.softmax(logits, dim=-1)
|
235 |
-
|
236 |
-
idx_next = torch.multinomial(scores, num_samples=1)
|
237 |
-
|
238 |
-
if not infer_text:
|
239 |
-
idx_next = rearrange(idx_next, "(b n) 1 -> b n", n=self.num_vq)
|
240 |
-
finish = finish | (idx_next == eos_token).any(1)
|
241 |
-
inputs_ids = torch.cat([inputs_ids, idx_next.unsqueeze(1)], 1)
|
242 |
-
else:
|
243 |
-
finish = finish | (idx_next == eos_token).any(1)
|
244 |
-
inputs_ids = torch.cat([inputs_ids, idx_next.unsqueeze(-1).expand(-1, -1, self.num_vq)], 1)
|
245 |
-
|
246 |
-
end_idx = end_idx + (~finish).int()
|
247 |
-
|
248 |
-
if finish.all():
|
249 |
-
break
|
250 |
-
|
251 |
-
inputs_ids = [inputs_ids[idx, start_idx: start_idx+i] for idx, i in enumerate(end_idx.int())]
|
252 |
-
inputs_ids = [i[:, 0] for i in inputs_ids] if infer_text else inputs_ids
|
253 |
-
|
254 |
-
if return_hidden:
|
255 |
-
hiddens = torch.stack(hiddens, 1)
|
256 |
-
hiddens = [hiddens[idx, :i] for idx, i in enumerate(end_idx.int())]
|
257 |
-
|
258 |
-
if not finish.all():
|
259 |
-
self.logger.warn(f'Incomplete result. hit max_new_token: {max_new_token}')
|
260 |
-
|
261 |
-
return {
|
262 |
-
'ids': inputs_ids,
|
263 |
-
'attentions': attentions,
|
264 |
-
'hiddens':hiddens,
|
265 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|