Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -14,19 +14,63 @@ from langchain_pinecone import PineconeVectorStore
|
|
14 |
|
15 |
# OpenAI API key
|
16 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
|
|
|
|
17 |
|
18 |
# Initialize Pinecone with PineconeGRPC
|
19 |
from pinecone import Pinecone
|
20 |
pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
|
21 |
# Define index name and parameters
|
22 |
index_name = "italy-kg"
|
|
|
23 |
|
24 |
|
25 |
-
# Embedding using OpenAI
|
26 |
-
embeddings = OpenAIEmbeddings(api_key=openai_api_key)
|
27 |
|
28 |
-
vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
# Gradio Blocks app with PDF uploader and table for logs
|
31 |
def process_pdf(file):
|
32 |
# Extract text from PDF using pdfplumber
|
@@ -61,17 +105,23 @@ def process_pdf(file):
|
|
61 |
with gr.Blocks() as demo:
|
62 |
gr.Markdown("# PDF Uploader to Pinecone with Logs")
|
63 |
|
64 |
-
|
65 |
with gr.Column():
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
|
73 |
-
|
74 |
-
|
|
|
|
|
75 |
|
76 |
-
#
|
77 |
-
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# OpenAI API key
|
16 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
17 |
+
# Embedding using OpenAI
|
18 |
+
embeddings = OpenAIEmbeddings(api_key=openai_api_key)
|
19 |
|
20 |
# Initialize Pinecone with PineconeGRPC
|
21 |
from pinecone import Pinecone
|
22 |
pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
|
23 |
# Define index name and parameters
|
24 |
index_name = "italy-kg"
|
25 |
+
vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
|
26 |
|
27 |
|
|
|
|
|
28 |
|
|
|
29 |
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
# Create a global list to store uploaded document records
|
34 |
+
uploaded_documents = []
|
35 |
+
from datetime import datetime
|
36 |
+
|
37 |
+
|
38 |
+
from langchain_core.documents import Document
|
39 |
+
# Function to process PDF, extract text, split it into chunks, and upload to the vector DB
|
40 |
+
def process_pdf(pdf_file,uploaded_documents):
|
41 |
+
if pdf_file is None:
|
42 |
+
return uploaded_documents, "No PDF file uploaded."
|
43 |
+
with pdfplumber.open(pdf_file) as pdf:
|
44 |
+
all_text = ""
|
45 |
+
for page in pdf.pages:
|
46 |
+
all_text += page.extract_text()
|
47 |
+
|
48 |
+
# Split the text into chunks
|
49 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=50)
|
50 |
+
chunks = text_splitter.split_text(all_text)
|
51 |
+
|
52 |
+
# Embed and upload the chunks into the vector database
|
53 |
+
chunk_ids = []
|
54 |
+
for chunk in chunks:
|
55 |
+
document = Document(page_content=chunk)
|
56 |
+
chunk_id = vectorstore.add_documents([document])
|
57 |
+
chunk_ids.append(chunk_id)
|
58 |
+
|
59 |
+
# Update the upload history
|
60 |
+
document_record = {
|
61 |
+
"Document Name": pdf_file.name,
|
62 |
+
"Upload Time": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
63 |
+
"Chunks": len(chunks),
|
64 |
+
"Pinecone Index": index_name
|
65 |
+
}
|
66 |
+
|
67 |
+
# Add the record to the global list
|
68 |
+
uploaded_documents.append(document_record)
|
69 |
+
|
70 |
+
# Convert the list of dictionaries into a list of lists for the dataframe
|
71 |
+
table_data = [[doc["Document Name"], doc["Upload Time"], doc["Chunks"], doc["Pinecone Index"]] for doc in uploaded_documents]
|
72 |
+
|
73 |
+
return table_data, f"Uploaded {len(chunks)} chunks to the vector database."
|
74 |
# Gradio Blocks app with PDF uploader and table for logs
|
75 |
def process_pdf(file):
|
76 |
# Extract text from PDF using pdfplumber
|
|
|
105 |
with gr.Blocks() as demo:
|
106 |
gr.Markdown("# PDF Uploader to Pinecone with Logs")
|
107 |
|
108 |
+
# File upload component
|
109 |
with gr.Column():
|
110 |
+
file_input = gr.File(label="Upload PDF", file_types=[".pdf"])
|
111 |
+
# Button to trigger processing
|
112 |
+
process_button = gr.Button("Process PDF and Upload")
|
113 |
+
|
114 |
+
# Dataframe to display uploaded document records
|
115 |
+
document_table = gr.Dataframe(headers=["Document Name", "Upload Time", "Chunks", "Pinecone Index"], interactive=False)
|
116 |
|
117 |
+
|
118 |
+
|
119 |
+
# Output textbox for results
|
120 |
+
output_textbox = gr.Textbox(label="Result")
|
121 |
|
122 |
+
# Define button click action
|
123 |
+
# process_button.click(fn=process_pdf, inputs=file_input, outputs=output_textbox)
|
124 |
+
process_button.click(fn=process_pdf, inputs=[file_input, gr.State([])], outputs=[document_table, output_textbox])
|
125 |
+
|
126 |
+
demo.queue()
|
127 |
+
demo.launch(show_error=True)
|