Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,9 +4,6 @@ import logging
|
|
4 |
from langchain_core.prompts import ChatPromptTemplate
|
5 |
from langchain_core.output_parsers import StrOutputParser
|
6 |
from langchain_openai import ChatOpenAI
|
7 |
-
from langchain_community.graphs import Neo4jGraph
|
8 |
-
from typing import List, Tuple
|
9 |
-
from pydantic import BaseModel, Field
|
10 |
from langchain_core.messages import AIMessage, HumanMessage
|
11 |
from langchain_core.runnables import (
|
12 |
RunnableBranch,
|
@@ -26,168 +23,59 @@ import torchaudio
|
|
26 |
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
|
27 |
import numpy as np
|
28 |
import threading
|
29 |
-
from langchain_community.vectorstores import Neo4jVector
|
30 |
from langchain_openai import OpenAIEmbeddings
|
|
|
|
|
31 |
|
|
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
conversational_memory = ConversationBufferWindowMemory(
|
35 |
-
memory_key='chat_history',
|
36 |
-
k=10,
|
37 |
-
return_messages=True
|
38 |
-
)
|
39 |
|
40 |
-
# Setup Neo4j
|
41 |
-
graph = Neo4jGraph(
|
42 |
-
url="neo4j+s://c62d0d35.databases.neo4j.io",
|
43 |
-
username="neo4j",
|
44 |
-
password="_x8f-_aAQvs2NB0x6s0ZHSh3W_y-HrENDbgStvsUCM0"
|
45 |
-
)
|
46 |
|
|
|
|
|
|
|
47 |
|
48 |
-
# directly show the graph resulting from the given Cypher query
|
49 |
-
default_cypher = "MATCH (s)-[r:!MENTIONS]->(t) RETURN s,r,t LIMIT 50"
|
50 |
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
search_type="hybrid",
|
56 |
-
node_label="Document",
|
57 |
-
text_node_properties=["text"],
|
58 |
-
embedding_node_property="embedding",
|
59 |
-
)
|
60 |
|
61 |
-
# Define entity extraction and retrieval functions
|
62 |
-
class Entities(BaseModel):
|
63 |
-
names: List[str] = Field(
|
64 |
-
..., description="All the person, organization, or business entities that appear in the text"
|
65 |
-
)
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
])
|
71 |
-
|
72 |
-
chat_model = ChatOpenAI(temperature=0, model_name="gpt-4o", api_key=os.environ['OPENAI_API_KEY'])
|
73 |
-
entity_chain = prompt | chat_model.with_structured_output(Entities)
|
74 |
-
|
75 |
-
def remove_lucene_chars(input: str) -> str:
|
76 |
-
return input.translate(str.maketrans({
|
77 |
-
"\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!",
|
78 |
-
"(": r"\(", ")": r"\)", "{": r"\{", "}": r"\}", "[": r"\[", "]": r"\]",
|
79 |
-
"^": r"\^", "~": r"\~", "*": r"\*", "?": r"\?", ":": r"\:", '"': r'\"',
|
80 |
-
";": r"\;", " ": r"\ "
|
81 |
-
}))
|
82 |
-
|
83 |
-
def generate_full_text_query(input: str) -> str:
|
84 |
-
full_text_query = ""
|
85 |
-
words = [el for el in remove_lucene_chars(input).split() if el]
|
86 |
-
for word in words[:-1]:
|
87 |
-
full_text_query += f" {word}~2 AND"
|
88 |
-
full_text_query += f" {words[-1]}~2"
|
89 |
-
return full_text_query.strip()
|
90 |
-
|
91 |
-
# Setup logging to a file to capture debug information
|
92 |
-
logging.basicConfig(filename='neo4j_retrieval.log', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
93 |
-
|
94 |
-
def structured_retriever(question: str) -> str:
|
95 |
-
result = ""
|
96 |
-
entities = entity_chain.invoke({"question": question})
|
97 |
-
for entity in entities.names:
|
98 |
-
response = graph.query(
|
99 |
-
"""CALL db.index.fulltext.queryNodes('entity', $query, {limit:2})
|
100 |
-
YIELD node,score
|
101 |
-
CALL {
|
102 |
-
WITH node
|
103 |
-
MATCH (node)-[r:!MENTIONS]->(neighbor)
|
104 |
-
RETURN node.id + ' - ' + type(r) + ' -> ' + neighbor.id AS output
|
105 |
-
UNION ALL
|
106 |
-
WITH node
|
107 |
-
MATCH (node)<-[r:!MENTIONS]-(neighbor)
|
108 |
-
RETURN neighbor.id + ' - ' + type(r) + ' -> ' + node.id AS output
|
109 |
-
}
|
110 |
-
RETURN output LIMIT 50
|
111 |
-
""",
|
112 |
-
{"query": generate_full_text_query(entity)},
|
113 |
-
)
|
114 |
-
result += "\n".join([el['output'] for el in response])
|
115 |
-
return result
|
116 |
-
|
117 |
-
def retriever_neo4j(question: str):
|
118 |
-
print(f"Search query: {question}")
|
119 |
-
structured_data = structured_retriever(question)
|
120 |
-
unstructured_data = [el.page_content for el in vector_index.similarity_search(question)]
|
121 |
-
final_data = f"""Structured data:
|
122 |
-
{structured_data}
|
123 |
-
Unstructured data:
|
124 |
-
{"#Document ". join(unstructured_data)}
|
125 |
-
"""
|
126 |
-
return final_data
|
127 |
-
|
128 |
-
# Setup for condensing the follow-up questions
|
129 |
-
_template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question,
|
130 |
-
in its original language.
|
131 |
-
Chat History:
|
132 |
-
{chat_history}
|
133 |
-
Follow Up Input: {question}
|
134 |
-
Standalone question:"""
|
135 |
-
|
136 |
-
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
|
137 |
-
|
138 |
-
def _format_chat_history(chat_history: list[tuple[str, str]]) -> list:
|
139 |
-
buffer = []
|
140 |
-
for human, ai in chat_history:
|
141 |
-
buffer.append(HumanMessage(content=human))
|
142 |
-
buffer.append(AIMessage(content=ai))
|
143 |
-
return buffer
|
144 |
-
|
145 |
-
_search_query = RunnableBranch(
|
146 |
-
# If input includes chat_history, we condense it with the follow-up question
|
147 |
-
(
|
148 |
-
RunnableLambda(lambda x: bool(x.get("chat_history"))).with_config(
|
149 |
-
run_name="HasChatHistoryCheck"
|
150 |
-
), # Condense follow-up question and chat into a standalone_question
|
151 |
-
RunnablePassthrough.assign(
|
152 |
-
chat_history=lambda x: _format_chat_history(x["chat_history"])
|
153 |
-
)
|
154 |
-
| CONDENSE_QUESTION_PROMPT
|
155 |
-
| ChatOpenAI(temperature=0,openai_api_key="sk-PV6RlpmTifrWo_olwL1IR69J9v2e5AKe-Xfxs_Yf9VT3BlbkFJm-UJQx5RNyGpok9MM_DYSTmayn7y-lKLSBqXecEoYA")
|
156 |
-
| StrOutputParser(),
|
157 |
-
),
|
158 |
-
# Else, we have no chat history, so just pass through the question
|
159 |
-
RunnableLambda(lambda x : x["question"]),
|
160 |
-
)
|
161 |
|
|
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
168 |
|
|
|
|
|
|
|
|
|
169 |
|
170 |
-
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
}
|
179 |
)
|
180 |
-
|
181 |
-
| chat_model
|
182 |
-
| StrOutputParser()
|
183 |
-
)
|
184 |
|
185 |
-
#
|
186 |
-
|
187 |
-
try:
|
188 |
-
return chain_neo4j.invoke({"question": question})
|
189 |
-
except Exception as e:
|
190 |
-
return f"Error: {str(e)}"
|
191 |
|
192 |
# Define the function to clear input and output
|
193 |
def clear_fields():
|
@@ -227,24 +115,31 @@ def generate_audio_elevenlabs(text):
|
|
227 |
|
228 |
|
229 |
|
|
|
|
|
|
|
230 |
def handle_mode_selection(mode, chat_history, question):
|
231 |
if mode == "Normal Chatbot":
|
232 |
-
# Append
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
|
|
|
|
|
|
240 |
|
241 |
elif mode == "Voice to Voice Conversation":
|
242 |
-
|
243 |
-
|
244 |
-
audio_path = generate_audio_elevenlabs(response_text) # Convert response to audio
|
245 |
yield [], "", audio_path # Only output the audio response without updating chatbot history
|
246 |
|
247 |
|
|
|
|
|
248 |
# Function to add a user's message to the chat history and clear the input box
|
249 |
def add_message(history, message):
|
250 |
if message.strip():
|
@@ -279,14 +174,11 @@ def generate_audio_from_last_response(history):
|
|
279 |
|
280 |
# Define example prompts
|
281 |
examples = [
|
282 |
-
["
|
283 |
-
["
|
284 |
-
["
|
285 |
-
["
|
286 |
-
["
|
287 |
-
["Is there a farmer's market or craft fair in Birmingham, Alabama?"],
|
288 |
-
["Are there any special holiday events or parades in Birmingham, Alabama, during December?"],
|
289 |
-
["What are the best places to enjoy live music in Birmingham, Alabama?"]
|
290 |
|
291 |
]
|
292 |
|
|
|
4 |
from langchain_core.prompts import ChatPromptTemplate
|
5 |
from langchain_core.output_parsers import StrOutputParser
|
6 |
from langchain_openai import ChatOpenAI
|
|
|
|
|
|
|
7 |
from langchain_core.messages import AIMessage, HumanMessage
|
8 |
from langchain_core.runnables import (
|
9 |
RunnableBranch,
|
|
|
23 |
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
|
24 |
import numpy as np
|
25 |
import threading
|
|
|
26 |
from langchain_openai import OpenAIEmbeddings
|
27 |
+
from langchain_pinecone import PineconeVectorStore
|
28 |
+
from langchain.chains import RetrievalQA
|
29 |
|
30 |
+
embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
|
31 |
+
def initialize_gpt_model():
|
32 |
+
return ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')
|
33 |
|
34 |
+
gpt_model = initialize_gpt_model()
|
|
|
|
|
|
|
|
|
|
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
gpt_embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
|
38 |
+
gpt_vectorstore = PineconeVectorStore(index_name="radardata10312024", embedding=gpt_embeddings)
|
39 |
+
gpt_retriever = gpt_vectorstore.as_retriever(search_kwargs={'k': 5})
|
40 |
|
|
|
|
|
41 |
|
42 |
|
43 |
+
# Pinecone setup
|
44 |
+
from pinecone import Pinecone
|
45 |
+
pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
|
|
|
|
|
|
|
|
|
|
|
46 |
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
index_name ="radardata10312024"
|
49 |
+
vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
|
50 |
+
retriever = vectorstore.as_retriever(search_kwargs={'k': 5})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')
|
53 |
|
54 |
+
#code for history
|
55 |
+
conversational_memory = ConversationBufferWindowMemory(
|
56 |
+
memory_key='chat_history',
|
57 |
+
k=10,
|
58 |
+
return_messages=True
|
59 |
+
)
|
60 |
|
61 |
+
template =f"""Hello there! As your friendly and knowledgeable guide here in Birmingham, Alabama.Give the short ,precise,crisp and straight-foreward response of maximum 2 sentences and dont greet.
|
62 |
+
{{context}}
|
63 |
+
Question: {{question}}
|
64 |
+
Helpful Answer:"""
|
65 |
|
66 |
+
QA_CHAIN_PROMPT= PromptTemplate(input_variables=["context", "question"], template=template)
|
67 |
|
68 |
+
def build_qa_chain(prompt_template):
|
69 |
+
qa_chain = RetrievalQA.from_chain_type(
|
70 |
+
llm=chat_model,
|
71 |
+
chain_type="stuff",
|
72 |
+
retriever=retriever,
|
73 |
+
chain_type_kwargs={"prompt": prompt_template}
|
|
|
74 |
)
|
75 |
+
return qa_chain # Return the qa_chain object
|
|
|
|
|
|
|
76 |
|
77 |
+
# Instantiate the QA Chain using the defined prompt template
|
78 |
+
qa_chain = build_qa_chain(QA_CHAIN_PROMPT)
|
|
|
|
|
|
|
|
|
79 |
|
80 |
# Define the function to clear input and output
|
81 |
def clear_fields():
|
|
|
115 |
|
116 |
|
117 |
|
118 |
+
import time
|
119 |
+
|
120 |
+
# Main function to handle mode selection with character-by-character streaming
|
121 |
def handle_mode_selection(mode, chat_history, question):
|
122 |
if mode == "Normal Chatbot":
|
123 |
+
chat_history.append((question, "")) # Append user question with an empty response initially
|
124 |
+
|
125 |
+
# Get response from Pinecone using the qa_chain
|
126 |
+
response = qa_chain({"query": question, "context": ""})
|
127 |
+
response_text = response['result']
|
128 |
+
|
129 |
+
# Stream each character in the response text to the chat history
|
130 |
+
for i, char in enumerate(response_text):
|
131 |
+
chat_history[-1] = (question, chat_history[-1][1] + char) # Update the last message
|
132 |
+
yield chat_history, "", None # Yield updated chat history
|
133 |
+
time.sleep(0.05) # Small delay to simulate streaming
|
134 |
|
135 |
elif mode == "Voice to Voice Conversation":
|
136 |
+
response_text = qa_chain({"query": question, "context": ""})['result']
|
137 |
+
audio_path = generate_audio_elevenlabs(response_text)
|
|
|
138 |
yield [], "", audio_path # Only output the audio response without updating chatbot history
|
139 |
|
140 |
|
141 |
+
|
142 |
+
|
143 |
# Function to add a user's message to the chat history and clear the input box
|
144 |
def add_message(history, message):
|
145 |
if message.strip():
|
|
|
174 |
|
175 |
# Define example prompts
|
176 |
examples = [
|
177 |
+
["what are the tree care services at alabama?"],
|
178 |
+
["where from i studies undergrade in marketing from alabama?"],
|
179 |
+
["what from i get tourism recreation center?"],
|
180 |
+
["where from i will get a retail loan and from which institute?"],
|
181 |
+
["where i will look for good dentist at alabama?"]
|
|
|
|
|
|
|
182 |
|
183 |
]
|
184 |
|