Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,11 +2,10 @@ import gradio as gr
|
|
2 |
import os
|
3 |
import logging
|
4 |
from langchain_core.prompts import ChatPromptTemplate
|
5 |
-
from langchain.memory import ConversationBufferWindowMemory
|
6 |
from langchain_core.output_parsers import StrOutputParser
|
|
|
7 |
from langchain_community.graphs import Neo4jGraph
|
8 |
-
from
|
9 |
-
from langchain.chains import GraphCypherQAChain
|
10 |
from pydantic import BaseModel, Field
|
11 |
from langchain_core.messages import AIMessage, HumanMessage
|
12 |
from langchain_core.runnables import (
|
@@ -16,25 +15,25 @@ from langchain_core.runnables import (
|
|
16 |
RunnableParallel,
|
17 |
)
|
18 |
from langchain_core.prompts.prompt import PromptTemplate
|
|
|
19 |
import tempfile
|
|
|
20 |
import time
|
21 |
-
import
|
|
|
22 |
import torch
|
23 |
-
import
|
24 |
-
import requests
|
25 |
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
|
26 |
-
|
27 |
-
|
28 |
|
29 |
-
# Setup logging to a file to capture debug information
|
30 |
-
logging.basicConfig(filename='neo4j_retrieval.log', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
31 |
|
32 |
-
#
|
33 |
conversational_memory = ConversationBufferWindowMemory(
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
)
|
38 |
|
39 |
# Setup Neo4j
|
40 |
graph = Neo4jGraph(
|
@@ -43,10 +42,6 @@ graph = Neo4jGraph(
|
|
43 |
password="Z10duoPkKCtENuOukw3eIlvl0xJWKtrVSr-_hGX1LQ4"
|
44 |
)
|
45 |
|
46 |
-
# Setup the Groq model
|
47 |
-
groq_api_key = os.getenv('GROQ_API_KEY')
|
48 |
-
llm = ChatGroq(groq_api_key=groq_api_key, model_name="Gemma2-9b-It")
|
49 |
-
|
50 |
# Define entity extraction and retrieval functions
|
51 |
class Entities(BaseModel):
|
52 |
names: List[str] = Field(
|
@@ -58,7 +53,8 @@ entity_prompt = ChatPromptTemplate.from_messages([
|
|
58 |
("human", "Use the given format to extract information from the following input: {question}"),
|
59 |
])
|
60 |
|
61 |
-
|
|
|
62 |
|
63 |
def remove_lucene_chars(input: str) -> str:
|
64 |
return input.translate(str.maketrans({
|
@@ -76,6 +72,9 @@ def generate_full_text_query(input: str) -> str:
|
|
76 |
full_text_query += f" {words[-1]}~2"
|
77 |
return full_text_query.strip()
|
78 |
|
|
|
|
|
|
|
79 |
def structured_retriever(question: str) -> str:
|
80 |
result = ""
|
81 |
entities = entity_chain.invoke({"question": question})
|
@@ -104,7 +103,7 @@ def retriever_neo4j(question: str):
|
|
104 |
logging.debug(f"Structured data: {structured_data}")
|
105 |
return structured_data
|
106 |
|
107 |
-
#
|
108 |
_template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question,
|
109 |
in its original language.
|
110 |
Chat History:
|
@@ -130,19 +129,20 @@ _search_query = RunnableBranch(
|
|
130 |
chat_history=lambda x: _format_chat_history(x["chat_history"])
|
131 |
)
|
132 |
| CONDENSE_QUESTION_PROMPT
|
133 |
-
|
|
134 |
| StrOutputParser(),
|
135 |
),
|
136 |
RunnableLambda(lambda x: x["question"]),
|
137 |
)
|
138 |
|
139 |
-
|
140 |
template = """I am a guide for Birmingham, Alabama. I can provide recommendations and insights about the city, including events and activities.
|
141 |
-
Ask your question directly, and I'll provide a precise,
|
142 |
{context}
|
143 |
Question: {question}
|
144 |
Answer:"""
|
145 |
|
|
|
146 |
qa_prompt = ChatPromptTemplate.from_template(template)
|
147 |
|
148 |
# Define the chain for Neo4j-based retrieval and response generation
|
@@ -154,7 +154,7 @@ chain_neo4j = (
|
|
154 |
}
|
155 |
)
|
156 |
| qa_prompt
|
157 |
-
|
|
158 |
| StrOutputParser()
|
159 |
)
|
160 |
|
@@ -163,20 +163,31 @@ def get_response(question):
|
|
163 |
try:
|
164 |
return chain_neo4j.invoke({"question": question})
|
165 |
except Exception as e:
|
166 |
-
logging.error(f"Error generating response: {str(e)}")
|
167 |
return f"Error: {str(e)}"
|
168 |
|
169 |
# Define the function to clear input and output
|
170 |
def clear_fields():
|
171 |
-
return [],
|
172 |
|
173 |
# Function to generate audio with Eleven Labs TTS
|
174 |
def generate_audio_elevenlabs(text):
|
175 |
XI_API_KEY = os.environ['ELEVENLABS_API']
|
176 |
VOICE_ID = 'ehbJzYLQFpwbJmGkqbnW'
|
177 |
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
|
178 |
-
headers = {
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
response = requests.post(tts_url, headers=headers, json=data, stream=True)
|
181 |
if response.ok:
|
182 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
|
@@ -185,32 +196,175 @@ def generate_audio_elevenlabs(text):
|
|
185 |
f.write(chunk)
|
186 |
audio_path = f.name
|
187 |
logging.debug(f"Audio saved to {audio_path}")
|
188 |
-
return audio_path # Return audio path for playback
|
189 |
else:
|
190 |
logging.error(f"Error generating audio: {response.text}")
|
191 |
return None
|
192 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
# Create the Gradio Blocks interface
|
194 |
with gr.Blocks(theme="rawrsor1/Everforest") as demo:
|
195 |
chatbot = gr.Chatbot([], elem_id="RADAR", bubble_full_width=False)
|
196 |
with gr.Row():
|
197 |
with gr.Column():
|
198 |
-
|
199 |
-
|
200 |
-
audio_output = gr.Audio(label="Audio", type="filepath", autoplay=True, interactive=False)
|
201 |
|
|
|
|
|
|
|
|
|
|
|
202 |
with gr.Row():
|
203 |
with gr.Column():
|
204 |
get_response_btn = gr.Button("Get Response")
|
|
|
|
|
205 |
with gr.Column():
|
206 |
generate_audio_btn = gr.Button("Generate Audio")
|
207 |
with gr.Column():
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
-
# Define interactions for buttons
|
211 |
-
get_response_btn.click(fn=get_response, inputs=question_input, outputs=chatbot)
|
212 |
-
generate_audio_btn.click(fn=generate_audio_elevenlabs, inputs=chatbot, outputs=audio_output)
|
213 |
-
clear_state_btn.click(fn=clear_fields, outputs=[chatbot, question_input, audio_output])
|
214 |
|
215 |
# Launch the Gradio interface
|
216 |
-
demo.launch(show_error=True)
|
|
|
2 |
import os
|
3 |
import logging
|
4 |
from langchain_core.prompts import ChatPromptTemplate
|
|
|
5 |
from langchain_core.output_parsers import StrOutputParser
|
6 |
+
from langchain_openai import ChatOpenAI
|
7 |
from langchain_community.graphs import Neo4jGraph
|
8 |
+
from typing import List, Tuple
|
|
|
9 |
from pydantic import BaseModel, Field
|
10 |
from langchain_core.messages import AIMessage, HumanMessage
|
11 |
from langchain_core.runnables import (
|
|
|
15 |
RunnableParallel,
|
16 |
)
|
17 |
from langchain_core.prompts.prompt import PromptTemplate
|
18 |
+
import requests
|
19 |
import tempfile
|
20 |
+
from langchain.memory import ConversationBufferWindowMemory
|
21 |
import time
|
22 |
+
import logging
|
23 |
+
from langchain.chains import ConversationChain
|
24 |
import torch
|
25 |
+
import torchaudio
|
|
|
26 |
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
|
27 |
+
import numpy as np
|
28 |
+
import threading
|
29 |
|
|
|
|
|
30 |
|
31 |
+
#code for history
|
32 |
conversational_memory = ConversationBufferWindowMemory(
|
33 |
+
memory_key='chat_history',
|
34 |
+
k=10,
|
35 |
+
return_messages=True
|
36 |
+
)
|
37 |
|
38 |
# Setup Neo4j
|
39 |
graph = Neo4jGraph(
|
|
|
42 |
password="Z10duoPkKCtENuOukw3eIlvl0xJWKtrVSr-_hGX1LQ4"
|
43 |
)
|
44 |
|
|
|
|
|
|
|
|
|
45 |
# Define entity extraction and retrieval functions
|
46 |
class Entities(BaseModel):
|
47 |
names: List[str] = Field(
|
|
|
53 |
("human", "Use the given format to extract information from the following input: {question}"),
|
54 |
])
|
55 |
|
56 |
+
chat_model = ChatOpenAI(temperature=0, model_name="gpt-4o", api_key=os.environ['OPENAI_API_KEY'])
|
57 |
+
entity_chain = entity_prompt | chat_model.with_structured_output(Entities)
|
58 |
|
59 |
def remove_lucene_chars(input: str) -> str:
|
60 |
return input.translate(str.maketrans({
|
|
|
72 |
full_text_query += f" {words[-1]}~2"
|
73 |
return full_text_query.strip()
|
74 |
|
75 |
+
# Setup logging to a file to capture debug information
|
76 |
+
logging.basicConfig(filename='neo4j_retrieval.log', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
77 |
+
|
78 |
def structured_retriever(question: str) -> str:
|
79 |
result = ""
|
80 |
entities = entity_chain.invoke({"question": question})
|
|
|
103 |
logging.debug(f"Structured data: {structured_data}")
|
104 |
return structured_data
|
105 |
|
106 |
+
# Setup for condensing the follow-up questions
|
107 |
_template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question,
|
108 |
in its original language.
|
109 |
Chat History:
|
|
|
129 |
chat_history=lambda x: _format_chat_history(x["chat_history"])
|
130 |
)
|
131 |
| CONDENSE_QUESTION_PROMPT
|
132 |
+
| ChatOpenAI(temperature=0, api_key=os.environ['OPENAI_API_KEY'])
|
133 |
| StrOutputParser(),
|
134 |
),
|
135 |
RunnableLambda(lambda x: x["question"]),
|
136 |
)
|
137 |
|
138 |
+
|
139 |
template = """I am a guide for Birmingham, Alabama. I can provide recommendations and insights about the city, including events and activities.
|
140 |
+
Ask your question directly, and I'll provide a precise and quick,short and crisp response in a conversational way without any Greet.
|
141 |
{context}
|
142 |
Question: {question}
|
143 |
Answer:"""
|
144 |
|
145 |
+
|
146 |
qa_prompt = ChatPromptTemplate.from_template(template)
|
147 |
|
148 |
# Define the chain for Neo4j-based retrieval and response generation
|
|
|
154 |
}
|
155 |
)
|
156 |
| qa_prompt
|
157 |
+
| chat_model
|
158 |
| StrOutputParser()
|
159 |
)
|
160 |
|
|
|
163 |
try:
|
164 |
return chain_neo4j.invoke({"question": question})
|
165 |
except Exception as e:
|
|
|
166 |
return f"Error: {str(e)}"
|
167 |
|
168 |
# Define the function to clear input and output
|
169 |
def clear_fields():
|
170 |
+
return [],"",None
|
171 |
|
172 |
# Function to generate audio with Eleven Labs TTS
|
173 |
def generate_audio_elevenlabs(text):
|
174 |
XI_API_KEY = os.environ['ELEVENLABS_API']
|
175 |
VOICE_ID = 'ehbJzYLQFpwbJmGkqbnW'
|
176 |
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
|
177 |
+
headers = {
|
178 |
+
"Accept": "application/json",
|
179 |
+
"xi-api-key": XI_API_KEY
|
180 |
+
}
|
181 |
+
data = {
|
182 |
+
"text": str(text),
|
183 |
+
"model_id": "eleven_multilingual_v2",
|
184 |
+
"voice_settings": {
|
185 |
+
"stability": 1.0,
|
186 |
+
"similarity_boost": 0.0,
|
187 |
+
"style": 0.60,
|
188 |
+
"use_speaker_boost": False
|
189 |
+
}
|
190 |
+
}
|
191 |
response = requests.post(tts_url, headers=headers, json=data, stream=True)
|
192 |
if response.ok:
|
193 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
|
|
|
196 |
f.write(chunk)
|
197 |
audio_path = f.name
|
198 |
logging.debug(f"Audio saved to {audio_path}")
|
199 |
+
return audio_path # Return audio path for automatic playback
|
200 |
else:
|
201 |
logging.error(f"Error generating audio: {response.text}")
|
202 |
return None
|
203 |
|
204 |
+
# Function to add a user's message to the chat history and clear the input box
|
205 |
+
def add_message(history, message):
|
206 |
+
if message.strip():
|
207 |
+
history.append((message, None)) # Add the user's message to the chat history only if it's not empty
|
208 |
+
return history, "" # Clear the input box
|
209 |
+
|
210 |
+
# Define function to generate a streaming response
|
211 |
+
def chat_with_bot(messages):
|
212 |
+
user_message = messages[-1][0] # Get the last user message (input)
|
213 |
+
messages[-1] = (user_message, "") # Prepare the placeholder for the bot's response
|
214 |
+
|
215 |
+
response = get_response(user_message)
|
216 |
+
|
217 |
+
|
218 |
+
|
219 |
+
# Simulate streaming response by iterating over each character in the response
|
220 |
+
for character in response:
|
221 |
+
messages[-1] = (user_message, messages[-1][1] + character)
|
222 |
+
yield messages # Stream each character
|
223 |
+
time.sleep(0.05) # Adjust delay as needed for real-time effect
|
224 |
+
|
225 |
+
yield messages # Final yield to ensure the full response is displayed
|
226 |
+
|
227 |
+
|
228 |
+
# Function to generate audio with Eleven Labs TTS from the last bot response
|
229 |
+
def generate_audio_from_last_response(history):
|
230 |
+
# Get the most recent bot response from the chat history
|
231 |
+
if history and len(history) > 0:
|
232 |
+
recent_response = history[-1][1] # The second item in the tuple is the bot response text
|
233 |
+
if recent_response:
|
234 |
+
return generate_audio_elevenlabs(recent_response)
|
235 |
+
return None
|
236 |
+
|
237 |
+
# Define example prompts
|
238 |
+
examples = [
|
239 |
+
["What are some popular events in Birmingham?"],
|
240 |
+
["Who are the top players of the Crimson Tide?"],
|
241 |
+
["Where can I find a hamburger?"],
|
242 |
+
["What are some popular tourist attractions in Birmingham?"],
|
243 |
+
["What are some good clubs in Birmingham?"],
|
244 |
+
["Is there a farmer's market or craft fair in Birmingham, Alabama?"],
|
245 |
+
["Are there any special holiday events or parades in Birmingham, Alabama, during December?"],
|
246 |
+
["What are the best places to enjoy live music in Birmingham, Alabama?"]
|
247 |
+
|
248 |
+
]
|
249 |
+
|
250 |
+
# Function to insert the prompt into the textbox when clicked
|
251 |
+
def insert_prompt(current_text, prompt):
|
252 |
+
return prompt[0] if prompt else current_text
|
253 |
+
|
254 |
+
|
255 |
+
# Define the ASR model with Whisper
|
256 |
+
model_id = 'openai/whisper-large-v3'
|
257 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
258 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
259 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
|
260 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
261 |
+
|
262 |
+
pipe_asr = pipeline(
|
263 |
+
"automatic-speech-recognition",
|
264 |
+
model=model,
|
265 |
+
tokenizer=processor.tokenizer,
|
266 |
+
feature_extractor=processor.feature_extractor,
|
267 |
+
max_new_tokens=128,
|
268 |
+
chunk_length_s=15,
|
269 |
+
batch_size=16,
|
270 |
+
torch_dtype=torch_dtype,
|
271 |
+
device=device,
|
272 |
+
return_timestamps=True
|
273 |
+
)
|
274 |
+
|
275 |
+
# Define the function to reset the state after 10 seconds
|
276 |
+
def auto_reset_state():
|
277 |
+
time.sleep(5)
|
278 |
+
return None, "" # Reset the state and clear input text
|
279 |
+
|
280 |
+
|
281 |
+
def transcribe_function(stream, new_chunk):
|
282 |
+
try:
|
283 |
+
sr, y = new_chunk[0], new_chunk[1]
|
284 |
+
except TypeError:
|
285 |
+
print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
|
286 |
+
return stream, "", None
|
287 |
+
|
288 |
+
# Ensure y is not empty and is at least 1-dimensional
|
289 |
+
if y is None or len(y) == 0:
|
290 |
+
return stream, "", None
|
291 |
+
|
292 |
+
y = y.astype(np.float32)
|
293 |
+
max_abs_y = np.max(np.abs(y))
|
294 |
+
if max_abs_y > 0:
|
295 |
+
y = y / max_abs_y
|
296 |
+
|
297 |
+
# Ensure stream is also at least 1-dimensional before concatenation
|
298 |
+
if stream is not None and len(stream) > 0:
|
299 |
+
stream = np.concatenate([stream, y])
|
300 |
+
else:
|
301 |
+
stream = y
|
302 |
+
|
303 |
+
# Process the audio data for transcription
|
304 |
+
result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
|
305 |
+
full_text = result.get("text", "")
|
306 |
+
|
307 |
+
# Start a thread to reset the state after 10 seconds
|
308 |
+
threading.Thread(target=auto_reset_state).start()
|
309 |
+
|
310 |
+
return stream, full_text, full_text
|
311 |
+
|
312 |
+
|
313 |
+
|
314 |
+
# Define the function to clear the state and input text
|
315 |
+
def clear_transcription_state():
|
316 |
+
return None, ""
|
317 |
+
|
318 |
+
|
319 |
+
|
320 |
# Create the Gradio Blocks interface
|
321 |
with gr.Blocks(theme="rawrsor1/Everforest") as demo:
|
322 |
chatbot = gr.Chatbot([], elem_id="RADAR", bubble_full_width=False)
|
323 |
with gr.Row():
|
324 |
with gr.Column():
|
325 |
+
question_input = gr.Textbox(label="Ask a Question", placeholder="Type your question here...")
|
326 |
+
audio_input = gr.Audio(sources=["microphone"],streaming=True,type='numpy',every=0.1,label="Speak to Ask")
|
|
|
327 |
|
328 |
+
|
329 |
+
|
330 |
+
with gr.Column():
|
331 |
+
audio_output = gr.Audio(label="Audio", type="filepath",autoplay=True,interactive=False)
|
332 |
+
|
333 |
with gr.Row():
|
334 |
with gr.Column():
|
335 |
get_response_btn = gr.Button("Get Response")
|
336 |
+
with gr.Column():
|
337 |
+
clear_state_btn = gr.Button("Clear State")
|
338 |
with gr.Column():
|
339 |
generate_audio_btn = gr.Button("Generate Audio")
|
340 |
with gr.Column():
|
341 |
+
clean_btn = gr.Button("Clean")
|
342 |
+
|
343 |
+
with gr.Row():
|
344 |
+
with gr.Column():
|
345 |
+
gr.Markdown("<h1 style='color: red;'>Example Prompts</h1>", elem_id="Example-Prompts")
|
346 |
+
gr.Examples(examples=examples, fn=insert_prompt, inputs=question_input, outputs=question_input,api_name="api_insert_example")
|
347 |
+
|
348 |
+
# Define interactions
|
349 |
+
# Define interactions for clicking the button
|
350 |
+
get_response_btn.click(fn=add_message, inputs=[chatbot, question_input], outputs=[chatbot, question_input],api_name="api_add_message_on_button_click")\
|
351 |
+
.then(fn=chat_with_bot, inputs=[chatbot], outputs=chatbot,api_name="api_get response_on_button")
|
352 |
+
# Define interaction for hitting the Enter key
|
353 |
+
question_input.submit(fn=add_message, inputs=[chatbot, question_input], outputs=[chatbot, question_input],api_name="api_add_message_on _enter")\
|
354 |
+
.then(fn=chat_with_bot, inputs=[chatbot], outputs=chatbot,api_name="api_get response_on_enter")
|
355 |
+
|
356 |
+
# Speech-to-Text functionality
|
357 |
+
state = gr.State()
|
358 |
+
audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, question_input],api_name="api_voice_to_text")
|
359 |
+
|
360 |
+
|
361 |
+
generate_audio_btn.click(fn=generate_audio_from_last_response, inputs=chatbot, outputs=audio_output,api_name="api_generate_text_to_audio")
|
362 |
+
clean_btn.click(fn=clear_fields, inputs=[], outputs=[chatbot, question_input, audio_output],api_name="api_clear_textbox")
|
363 |
+
|
364 |
+
|
365 |
+
# Clear state interaction
|
366 |
+
clear_state_btn.click(fn=clear_transcription_state, outputs=[question_input, state],api_name="api_clean_state_transcription")
|
367 |
|
|
|
|
|
|
|
|
|
368 |
|
369 |
# Launch the Gradio interface
|
370 |
+
demo.launch(show_error=True)
|