Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -32,15 +32,12 @@ vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
|
|
32 |
|
33 |
# Create a global list to store uploaded document records
|
34 |
uploaded_documents = []
|
35 |
-
from datetime import datetime
|
36 |
|
37 |
-
|
38 |
-
from langchain_core.documents import Document
|
39 |
# Function to process PDF, extract text, split it into chunks, and upload to the vector DB
|
40 |
-
def process_pdf(pdf_file,uploaded_documents):
|
41 |
if pdf_file is None:
|
42 |
return uploaded_documents, "No PDF file uploaded."
|
43 |
-
with pdfplumber.open(pdf_file) as pdf:
|
44 |
all_text = ""
|
45 |
for page in pdf.pages:
|
46 |
all_text += page.extract_text()
|
@@ -65,63 +62,31 @@ def process_pdf(pdf_file,uploaded_documents):
|
|
65 |
}
|
66 |
|
67 |
# Add the record to the global list
|
68 |
-
uploaded_documents.append(document_record)
|
69 |
|
70 |
# Convert the list of dictionaries into a list of lists for the dataframe
|
71 |
table_data = [[doc["Document Name"], doc["Upload Time"], doc["Chunks"], doc["Pinecone Index"]] for doc in uploaded_documents]
|
72 |
|
73 |
return table_data, f"Uploaded {len(chunks)} chunks to the vector database."
|
74 |
-
# Gradio Blocks app with PDF uploader and table for logs
|
75 |
-
def process_pdf(file):
|
76 |
-
# Extract text from PDF using pdfplumber
|
77 |
-
with pdfplumber.open(file.name) as pdf:
|
78 |
-
text = ""
|
79 |
-
for page in pdf.pages:
|
80 |
-
text += page.extract_text()
|
81 |
-
|
82 |
-
# Split text using RecursiveCharacterTextSplitter
|
83 |
-
documents = [Document(page_content=text)]
|
84 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=50)
|
85 |
-
docs = text_splitter.split_documents(documents)
|
86 |
-
|
87 |
-
# Add documents to Pinecone Vector Store
|
88 |
-
vectorstore = PineconeVectorStore(index_name, embeddings)
|
89 |
-
vectorstore.add_documents(docs)
|
90 |
-
|
91 |
-
# Prepare log data
|
92 |
-
log_data = {
|
93 |
-
"File Name": [file.name],
|
94 |
-
"File Size (KB)": [os.path.getsize(file.name) / 1024],
|
95 |
-
"Number of Chunks": [len(docs)],
|
96 |
-
"Timestamp": [time.strftime("%Y-%m-%d %H:%M:%S")]
|
97 |
-
}
|
98 |
-
|
99 |
-
# Create a DataFrame for logs
|
100 |
-
df_logs = pd.DataFrame(log_data)
|
101 |
-
|
102 |
-
return "PDF processed successfully!", df_logs
|
103 |
|
104 |
# Gradio Interface
|
105 |
with gr.Blocks() as demo:
|
106 |
gr.Markdown("# PDF Uploader to Pinecone with Logs")
|
107 |
|
108 |
-
# File upload component
|
109 |
with gr.Column():
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
# process_button.click(fn=process_pdf, inputs=file_input, outputs=output_textbox)
|
124 |
-
process_button.click(fn=process_pdf, inputs=[file_input, gr.State([])], outputs=[document_table, output_textbox])
|
125 |
-
|
126 |
demo.queue()
|
127 |
demo.launch(show_error=True)
|
|
|
32 |
|
33 |
# Create a global list to store uploaded document records
|
34 |
uploaded_documents = []
|
|
|
35 |
|
|
|
|
|
36 |
# Function to process PDF, extract text, split it into chunks, and upload to the vector DB
|
37 |
+
def process_pdf(pdf_file, uploaded_documents):
|
38 |
if pdf_file is None:
|
39 |
return uploaded_documents, "No PDF file uploaded."
|
40 |
+
with pdfplumber.open(pdf_file.name) as pdf:
|
41 |
all_text = ""
|
42 |
for page in pdf.pages:
|
43 |
all_text += page.extract_text()
|
|
|
62 |
}
|
63 |
|
64 |
# Add the record to the global list
|
65 |
+
uploaded_documents.append(document_record)
|
66 |
|
67 |
# Convert the list of dictionaries into a list of lists for the dataframe
|
68 |
table_data = [[doc["Document Name"], doc["Upload Time"], doc["Chunks"], doc["Pinecone Index"]] for doc in uploaded_documents]
|
69 |
|
70 |
return table_data, f"Uploaded {len(chunks)} chunks to the vector database."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
# Gradio Interface
|
73 |
with gr.Blocks() as demo:
|
74 |
gr.Markdown("# PDF Uploader to Pinecone with Logs")
|
75 |
|
76 |
+
# File upload component
|
77 |
with gr.Column():
|
78 |
+
file_input = gr.File(label="Upload PDF", file_types=[".pdf"])
|
79 |
+
# Button to trigger processing
|
80 |
+
process_button = gr.Button("Process PDF and Upload")
|
81 |
+
|
82 |
+
# Dataframe to display uploaded document records
|
83 |
+
document_table = gr.Dataframe(headers=["Document Name", "Upload Time", "Chunks", "Pinecone Index"], interactive=False)
|
84 |
+
|
85 |
+
# Output textbox for results
|
86 |
+
output_textbox = gr.Textbox(label="Result")
|
87 |
+
|
88 |
+
# Define button click action
|
89 |
+
process_button.click(fn=process_pdf, inputs=[file_input, gr.State([])], outputs=[document_table, output_textbox])
|
90 |
+
|
|
|
|
|
|
|
91 |
demo.queue()
|
92 |
demo.launch(show_error=True)
|