Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -8,10 +8,21 @@ from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
|
|
8 |
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
9 |
from langchain_community.vectorstores import Neo4jVector
|
10 |
from langchain_community.graphs import Neo4jGraph
|
11 |
-
from langchain_experimental.graph_transformers import LLMGraphTransformer
|
12 |
from langchain_core.prompts import ChatPromptTemplate
|
13 |
import time
|
14 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Neo4j setup
|
17 |
graph = Neo4jGraph(
|
@@ -53,136 +64,63 @@ pipe_asr = pipeline(
|
|
53 |
# Function to reset the state after 10 seconds
|
54 |
def auto_reset_state():
|
55 |
time.sleep(2)
|
56 |
-
return
|
57 |
-
|
58 |
|
59 |
# Function to process audio input and transcribe it
|
60 |
-
def transcribe_function(
|
61 |
try:
|
62 |
sr, y = new_chunk[0], new_chunk[1]
|
63 |
except TypeError:
|
64 |
print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
|
65 |
-
return
|
66 |
|
67 |
-
# Ensure y is not empty and is at least 1-dimensional
|
68 |
if y is None or len(y) == 0:
|
69 |
-
return
|
70 |
|
71 |
y = y.astype(np.float32)
|
72 |
max_abs_y = np.max(np.abs(y))
|
73 |
if max_abs_y > 0:
|
74 |
y = y / max_abs_y
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
stream = np.concatenate([stream, y])
|
79 |
else:
|
80 |
-
stream = y
|
81 |
|
82 |
-
|
83 |
-
result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
|
84 |
full_text = result.get("text", "")
|
85 |
|
86 |
-
# Start a thread to reset the state after 10 seconds
|
87 |
threading.Thread(target=auto_reset_state).start()
|
|
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
#full_text_query = ""
|
96 |
-
#words = [el for el in input.split() if el]
|
97 |
-
#for word in words[:-1]:
|
98 |
-
#full_text_query += f" {word}~2 AND"
|
99 |
-
#full_text_query += f" {words[-1]}~2"
|
100 |
-
#return full_text_query.strip()
|
101 |
-
|
102 |
-
|
103 |
-
# Function to generate a full-text search query for Neo4j
|
104 |
-
def generate_full_text_query(input: str) -> str:
|
105 |
-
# Split the input into words, ignoring any empty strings
|
106 |
-
words = [el for el in input.split() if el]
|
107 |
-
|
108 |
-
# Check if there are no words
|
109 |
-
if not words:
|
110 |
-
return "" # Return an empty string or a default query if desired
|
111 |
-
|
112 |
-
# Create the full-text query with fuzziness (~2 for proximity search)
|
113 |
-
full_text_query = ""
|
114 |
-
for word in words[:-1]:
|
115 |
-
full_text_query += f" {word}~2 AND"
|
116 |
-
full_text_query += f" {words[-1]}~2"
|
117 |
-
return full_text_query.strip()
|
118 |
-
|
119 |
-
|
120 |
|
121 |
# Function to generate audio with Eleven Labs TTS
|
122 |
def generate_audio_elevenlabs(text):
|
123 |
XI_API_KEY = os.environ['ELEVENLABS_API']
|
124 |
VOICE_ID = 'ehbJzYLQFpwbJmGkqbnW'
|
125 |
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
|
126 |
-
headers = {
|
127 |
-
|
128 |
-
"xi-api-key": XI_API_KEY
|
129 |
-
}
|
130 |
-
data = {
|
131 |
-
"text": str(text),
|
132 |
-
"model_id": "eleven_multilingual_v2",
|
133 |
-
"voice_settings": {
|
134 |
-
"stability": 1.0,
|
135 |
-
"similarity_boost": 0.0,
|
136 |
-
"style": 0.60,
|
137 |
-
"use_speaker_boost": False
|
138 |
-
}
|
139 |
-
}
|
140 |
response = requests.post(tts_url, headers=headers, json=data, stream=True)
|
141 |
if response.ok:
|
142 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
|
143 |
for chunk in response.iter_content(chunk_size=1024):
|
144 |
-
|
145 |
-
|
146 |
-
audio_path = f.name
|
147 |
-
return audio_path # Return audio path for automatic playback
|
148 |
else:
|
149 |
print(f"Error generating audio: {response.text}")
|
150 |
return None
|
151 |
|
152 |
-
# Define the
|
153 |
-
template = """I am a guide for Birmingham, Alabama. I can provide recommendations and insights about the city, including events and activities.
|
154 |
-
Ask your question directly, and I'll provide a precise and quick,short and crisp response in a conversational and straight-foreward way without any Greet.
|
155 |
-
Context:
|
156 |
-
{context}
|
157 |
-
|
158 |
-
Question: {question}
|
159 |
-
Answer concisely:"""
|
160 |
-
|
161 |
-
# Create a prompt object using the template
|
162 |
-
prompt = ChatPromptTemplate.from_template(template)
|
163 |
-
|
164 |
-
# Function to generate a response using the prompt and the context
|
165 |
-
def generate_response_with_prompt(context, question):
|
166 |
-
formatted_prompt = prompt.format(
|
167 |
-
context=context,
|
168 |
-
question=question
|
169 |
-
)
|
170 |
-
# Use the ChatOpenAI instance to generate a response directly from the formatted prompt
|
171 |
-
llm = ChatOpenAI(temperature=0, api_key=os.environ['OPENAI_API_KEY'])
|
172 |
-
response = llm(formatted_prompt)
|
173 |
-
return response.content.strip()
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
# Function to reset the state
|
178 |
-
def reset_state():
|
179 |
-
return None, "" # Reset the state and clear input text
|
180 |
-
|
181 |
-
# Define the function to generate a hybrid response using Neo4j and other retrieval methods
|
182 |
def retriever(question: str):
|
183 |
-
|
184 |
-
|
185 |
-
CALL db.index.fulltext.queryNodes('entity', $query, {{limit: 2}})
|
186 |
YIELD node, score
|
187 |
RETURN node.id AS entity, node.text AS context, score
|
188 |
ORDER BY score DESC
|
@@ -191,44 +129,27 @@ def retriever(question: str):
|
|
191 |
structured_data = graph.query(structured_query, {"query": generate_full_text_query(question)})
|
192 |
structured_response = "\n".join([f"{record['entity']}: {record['context']}" for record in structured_data])
|
193 |
|
194 |
-
# Unstructured data retrieval from vector store
|
195 |
unstructured_data = [el.page_content for el in vector_index.similarity_search(question)]
|
196 |
unstructured_response = "\n".join(unstructured_data)
|
197 |
|
198 |
-
# Combine structured and unstructured responses
|
199 |
combined_context = f"Structured data:\n{structured_response}\n\nUnstructured data:\n{unstructured_response}"
|
200 |
-
|
201 |
-
# Generate the final response using the prompt template
|
202 |
-
final_response = generate_response_with_prompt(combined_context, question)
|
203 |
-
return final_response
|
204 |
-
|
205 |
|
206 |
# Function to handle the entire audio query and response process
|
207 |
-
def process_audio_query(audio_input):
|
208 |
-
|
209 |
-
_, transcription, _ = transcribe_function(stream, audio_input)
|
210 |
-
print(f"Transcription: {transcription}")
|
211 |
-
|
212 |
-
# Retrieve hybrid response using Neo4j and other methods
|
213 |
response_text = retriever(transcription)
|
214 |
-
print(f"Response: {response_text}")
|
215 |
-
|
216 |
-
# Generate audio from the response text
|
217 |
audio_path = generate_audio_elevenlabs(response_text)
|
218 |
-
return audio_path
|
219 |
-
|
220 |
-
# Function to handle submit button click
|
221 |
-
def on_submit(audio_input):
|
222 |
-
return process_audio_query(audio_input)
|
223 |
|
224 |
-
# Create Gradio interface for audio input
|
225 |
with gr.Blocks() as interface:
|
226 |
-
audio_input = gr.Audio(sources="microphone", type="numpy", streaming=True,every=0.1)
|
227 |
submit_button = gr.Button("Submit")
|
228 |
audio_output = gr.Audio(type="filepath", autoplay=True)
|
|
|
229 |
|
230 |
-
submit_button.click(fn=
|
231 |
|
232 |
# Launch the Gradio app
|
233 |
interface.launch()
|
234 |
-
|
|
|
8 |
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
9 |
from langchain_community.vectorstores import Neo4jVector
|
10 |
from langchain_community.graphs import Neo4jGraph
|
|
|
11 |
from langchain_core.prompts import ChatPromptTemplate
|
12 |
import time
|
13 |
import os
|
14 |
+
import io
|
15 |
+
from pydub import AudioSegment
|
16 |
+
from dataclasses import dataclass
|
17 |
+
|
18 |
+
# Define AppState dataclass for managing the application's state
|
19 |
+
@dataclass
|
20 |
+
class AppState:
|
21 |
+
stream: np.ndarray | None = None
|
22 |
+
sampling_rate: int = 0
|
23 |
+
pause_detected: bool = False
|
24 |
+
stopped: bool = False
|
25 |
+
conversation: list = []
|
26 |
|
27 |
# Neo4j setup
|
28 |
graph = Neo4jGraph(
|
|
|
64 |
# Function to reset the state after 10 seconds
|
65 |
def auto_reset_state():
|
66 |
time.sleep(2)
|
67 |
+
return AppState() # Reset the state
|
|
|
68 |
|
69 |
# Function to process audio input and transcribe it
|
70 |
+
def transcribe_function(state: AppState, new_chunk):
|
71 |
try:
|
72 |
sr, y = new_chunk[0], new_chunk[1]
|
73 |
except TypeError:
|
74 |
print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
|
75 |
+
return state, ""
|
76 |
|
|
|
77 |
if y is None or len(y) == 0:
|
78 |
+
return state, ""
|
79 |
|
80 |
y = y.astype(np.float32)
|
81 |
max_abs_y = np.max(np.abs(y))
|
82 |
if max_abs_y > 0:
|
83 |
y = y / max_abs_y
|
84 |
|
85 |
+
if state.stream is not None and len(state.stream) > 0:
|
86 |
+
state.stream = np.concatenate([state.stream, y])
|
|
|
87 |
else:
|
88 |
+
state.stream = y
|
89 |
|
90 |
+
result = pipe_asr({"array": state.stream, "sampling_rate": sr}, return_timestamps=False)
|
|
|
91 |
full_text = result.get("text", "")
|
92 |
|
|
|
93 |
threading.Thread(target=auto_reset_state).start()
|
94 |
+
return state, full_text
|
95 |
|
96 |
+
# Function to generate a response using the prompt and the context
|
97 |
+
def generate_response_with_prompt(context, question):
|
98 |
+
formatted_prompt = prompt.format(context=context, question=question)
|
99 |
+
llm = ChatOpenAI(temperature=0, api_key=os.environ['OPENAI_API_KEY'])
|
100 |
+
response = llm(formatted_prompt)
|
101 |
+
return response.content.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
# Function to generate audio with Eleven Labs TTS
|
104 |
def generate_audio_elevenlabs(text):
|
105 |
XI_API_KEY = os.environ['ELEVENLABS_API']
|
106 |
VOICE_ID = 'ehbJzYLQFpwbJmGkqbnW'
|
107 |
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
|
108 |
+
headers = {"Accept": "application/json", "xi-api-key": XI_API_KEY}
|
109 |
+
data = {"text": text, "model_id": "eleven_multilingual_v2", "voice_settings": {"stability": 1.0}}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
response = requests.post(tts_url, headers=headers, json=data, stream=True)
|
111 |
if response.ok:
|
112 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
|
113 |
for chunk in response.iter_content(chunk_size=1024):
|
114 |
+
f.write(chunk)
|
115 |
+
return f.name
|
|
|
|
|
116 |
else:
|
117 |
print(f"Error generating audio: {response.text}")
|
118 |
return None
|
119 |
|
120 |
+
# Define the function to retrieve information using Neo4j and the vector store
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
def retriever(question: str):
|
122 |
+
structured_query = """
|
123 |
+
CALL db.index.fulltext.queryNodes('entity', $query, {limit: 2})
|
|
|
124 |
YIELD node, score
|
125 |
RETURN node.id AS entity, node.text AS context, score
|
126 |
ORDER BY score DESC
|
|
|
129 |
structured_data = graph.query(structured_query, {"query": generate_full_text_query(question)})
|
130 |
structured_response = "\n".join([f"{record['entity']}: {record['context']}" for record in structured_data])
|
131 |
|
|
|
132 |
unstructured_data = [el.page_content for el in vector_index.similarity_search(question)]
|
133 |
unstructured_response = "\n".join(unstructured_data)
|
134 |
|
|
|
135 |
combined_context = f"Structured data:\n{structured_response}\n\nUnstructured data:\n{unstructured_response}"
|
136 |
+
return generate_response_with_prompt(combined_context, question)
|
|
|
|
|
|
|
|
|
137 |
|
138 |
# Function to handle the entire audio query and response process
|
139 |
+
def process_audio_query(state: AppState, audio_input):
|
140 |
+
state, transcription = transcribe_function(state, audio_input)
|
|
|
|
|
|
|
|
|
141 |
response_text = retriever(transcription)
|
|
|
|
|
|
|
142 |
audio_path = generate_audio_elevenlabs(response_text)
|
143 |
+
return audio_path, state
|
|
|
|
|
|
|
|
|
144 |
|
145 |
+
# Create Gradio interface for audio input and output
|
146 |
with gr.Blocks() as interface:
|
147 |
+
audio_input = gr.Audio(sources="microphone", type="numpy", streaming=True, every=0.1)
|
148 |
submit_button = gr.Button("Submit")
|
149 |
audio_output = gr.Audio(type="filepath", autoplay=True)
|
150 |
+
state = gr.State(AppState())
|
151 |
|
152 |
+
submit_button.click(fn=process_audio_query, inputs=[state, audio_input], outputs=[audio_output, state])
|
153 |
|
154 |
# Launch the Gradio app
|
155 |
interface.launch()
|
|