Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,37 +5,72 @@ from langchain_core.prompts import ChatPromptTemplate
|
|
5 |
from langchain_core.output_parsers import StrOutputParser
|
6 |
from langchain_openai import ChatOpenAI
|
7 |
from langchain_community.graphs import Neo4jGraph
|
8 |
-
from typing import List
|
9 |
from pydantic import BaseModel, Field
|
10 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
import requests
|
12 |
import tempfile
|
|
|
|
|
|
|
|
|
13 |
import torch
|
|
|
|
|
14 |
import numpy as np
|
|
|
|
|
|
|
15 |
|
16 |
-
# Setup logging to a file to capture debug information
|
17 |
-
logging.basicConfig(filename='neo4j_retrieval.log', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
18 |
|
19 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
graph = Neo4jGraph(
|
21 |
url="neo4j+s://c62d0d35.databases.neo4j.io",
|
22 |
username="neo4j",
|
23 |
password="_x8f-_aAQvs2NB0x6s0ZHSh3W_y-HrENDbgStvsUCM0"
|
24 |
)
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
# Define entity extraction and retrieval functions
|
27 |
class Entities(BaseModel):
|
28 |
names: List[str] = Field(
|
29 |
..., description="All the person, organization, or business entities that appear in the text"
|
30 |
)
|
31 |
|
32 |
-
|
33 |
-
chat_model = ChatOpenAI(temperature=0, model_name="gpt-4", api_key=os.environ['OPENAI_API_KEY'])
|
34 |
-
entity_prompt = ChatPromptTemplate.from_messages([
|
35 |
("system", "You are extracting organization and person entities from the text."),
|
36 |
("human", "Use the given format to extract information from the following input: {question}"),
|
37 |
])
|
38 |
-
|
|
|
|
|
39 |
|
40 |
def remove_lucene_chars(input: str) -> str:
|
41 |
return input.translate(str.maketrans({
|
@@ -53,7 +88,10 @@ def generate_full_text_query(input: str) -> str:
|
|
53 |
full_text_query += f" {words[-1]}~2"
|
54 |
return full_text_query.strip()
|
55 |
|
56 |
-
|
|
|
|
|
|
|
57 |
result = ""
|
58 |
entities = entity_chain.invoke({"question": question})
|
59 |
for entity in entities.names:
|
@@ -64,6 +102,10 @@ def retrieve_data_from_neo4j(question: str) -> str:
|
|
64 |
WITH node
|
65 |
MATCH (node)-[r:!MENTIONS]->(neighbor)
|
66 |
RETURN node.id + ' - ' + type(r) + ' -> ' + neighbor.id AS output
|
|
|
|
|
|
|
|
|
67 |
}
|
68 |
RETURN output LIMIT 50
|
69 |
""",
|
@@ -72,23 +114,188 @@ def retrieve_data_from_neo4j(question: str) -> str:
|
|
72 |
result += "\n".join([el['output'] for el in response])
|
73 |
return result
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
# Function to generate audio with Eleven Labs TTS
|
76 |
def generate_audio_elevenlabs(text):
|
77 |
XI_API_KEY = os.environ['ELEVENLABS_API']
|
78 |
VOICE_ID = 'ehbJzYLQFpwbJmGkqbnW'
|
79 |
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
|
80 |
-
headers = {
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
response = requests.post(tts_url, headers=headers, json=data, stream=True)
|
83 |
if response.ok:
|
84 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
|
85 |
for chunk in response.iter_content(chunk_size=1024):
|
86 |
if chunk:
|
87 |
f.write(chunk)
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
return None
|
90 |
|
91 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
model_id = 'openai/whisper-large-v3'
|
93 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
94 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
@@ -104,37 +311,146 @@ pipe_asr = pipeline(
|
|
104 |
chunk_length_s=15,
|
105 |
batch_size=16,
|
106 |
torch_dtype=torch_dtype,
|
107 |
-
device=device
|
|
|
108 |
)
|
109 |
|
110 |
-
#
|
111 |
-
def
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
|
121 |
-
# Convert response to audio
|
122 |
-
return generate_audio_elevenlabs(response_text)
|
123 |
|
124 |
-
|
125 |
-
with gr.Blocks() as demo:
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
)
|
138 |
|
139 |
-
# Launch Gradio interface
|
140 |
-
demo.launch(show_error=True,
|
|
|
5 |
from langchain_core.output_parsers import StrOutputParser
|
6 |
from langchain_openai import ChatOpenAI
|
7 |
from langchain_community.graphs import Neo4jGraph
|
8 |
+
from typing import List, Tuple
|
9 |
from pydantic import BaseModel, Field
|
10 |
+
from langchain_core.messages import AIMessage, HumanMessage
|
11 |
+
from langchain_core.runnables import (
|
12 |
+
RunnableBranch,
|
13 |
+
RunnableLambda,
|
14 |
+
RunnablePassthrough,
|
15 |
+
RunnableParallel,
|
16 |
+
)
|
17 |
+
from langchain_core.prompts.prompt import PromptTemplate
|
18 |
import requests
|
19 |
import tempfile
|
20 |
+
from langchain.memory import ConversationBufferWindowMemory
|
21 |
+
import time
|
22 |
+
import logging
|
23 |
+
from langchain.chains import ConversationChain
|
24 |
import torch
|
25 |
+
import torchaudio
|
26 |
+
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
|
27 |
import numpy as np
|
28 |
+
import threading
|
29 |
+
from langchain_community.vectorstores import Neo4jVector
|
30 |
+
from langchain_openai import OpenAIEmbeddings
|
31 |
|
|
|
|
|
32 |
|
33 |
+
#code for history
|
34 |
+
conversational_memory = ConversationBufferWindowMemory(
|
35 |
+
memory_key='chat_history',
|
36 |
+
k=10,
|
37 |
+
return_messages=True
|
38 |
+
)
|
39 |
+
|
40 |
+
# Setup Neo4j
|
41 |
graph = Neo4jGraph(
|
42 |
url="neo4j+s://c62d0d35.databases.neo4j.io",
|
43 |
username="neo4j",
|
44 |
password="_x8f-_aAQvs2NB0x6s0ZHSh3W_y-HrENDbgStvsUCM0"
|
45 |
)
|
46 |
|
47 |
+
|
48 |
+
# directly show the graph resulting from the given Cypher query
|
49 |
+
default_cypher = "MATCH (s)-[r:!MENTIONS]->(t) RETURN s,r,t LIMIT 50"
|
50 |
+
|
51 |
+
|
52 |
+
vector_index = Neo4jVector.from_existing_graph(
|
53 |
+
OpenAIEmbeddings(openai_api_key="sk-PV6RlpmTifrWo_olwL1IR69J9v2e5AKe-Xfxs_Yf9VT3BlbkFJm-UJQx5RNyGpok9MM_DYSTmayn7y-lKLSBqXecEoYA"),
|
54 |
+
graph=graph,
|
55 |
+
search_type="hybrid",
|
56 |
+
node_label="Document",
|
57 |
+
text_node_properties=["text"],
|
58 |
+
embedding_node_property="embedding",
|
59 |
+
)
|
60 |
+
|
61 |
# Define entity extraction and retrieval functions
|
62 |
class Entities(BaseModel):
|
63 |
names: List[str] = Field(
|
64 |
..., description="All the person, organization, or business entities that appear in the text"
|
65 |
)
|
66 |
|
67 |
+
prompt = ChatPromptTemplate.from_messages([
|
|
|
|
|
68 |
("system", "You are extracting organization and person entities from the text."),
|
69 |
("human", "Use the given format to extract information from the following input: {question}"),
|
70 |
])
|
71 |
+
|
72 |
+
chat_model = ChatOpenAI(temperature=0, model_name="gpt-4o", api_key=os.environ['OPENAI_API_KEY'])
|
73 |
+
entity_chain = prompt | chat_model.with_structured_output(Entities)
|
74 |
|
75 |
def remove_lucene_chars(input: str) -> str:
|
76 |
return input.translate(str.maketrans({
|
|
|
88 |
full_text_query += f" {words[-1]}~2"
|
89 |
return full_text_query.strip()
|
90 |
|
91 |
+
# Setup logging to a file to capture debug information
|
92 |
+
logging.basicConfig(filename='neo4j_retrieval.log', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
93 |
+
|
94 |
+
def structured_retriever(question: str) -> str:
|
95 |
result = ""
|
96 |
entities = entity_chain.invoke({"question": question})
|
97 |
for entity in entities.names:
|
|
|
102 |
WITH node
|
103 |
MATCH (node)-[r:!MENTIONS]->(neighbor)
|
104 |
RETURN node.id + ' - ' + type(r) + ' -> ' + neighbor.id AS output
|
105 |
+
UNION ALL
|
106 |
+
WITH node
|
107 |
+
MATCH (node)<-[r:!MENTIONS]-(neighbor)
|
108 |
+
RETURN neighbor.id + ' - ' + type(r) + ' -> ' + node.id AS output
|
109 |
}
|
110 |
RETURN output LIMIT 50
|
111 |
""",
|
|
|
114 |
result += "\n".join([el['output'] for el in response])
|
115 |
return result
|
116 |
|
117 |
+
def retriever(question: str):
|
118 |
+
print(f"Search query: {question}")
|
119 |
+
structured_data = structured_retriever(question)
|
120 |
+
unstructured_data = [el.page_content for el in vector_index.similarity_search(question)]
|
121 |
+
final_data = f"""Structured data:
|
122 |
+
{structured_data}
|
123 |
+
Unstructured data:
|
124 |
+
{"#Document ". join(unstructured_data)}
|
125 |
+
"""
|
126 |
+
return final_data
|
127 |
+
|
128 |
+
# Setup for condensing the follow-up questions
|
129 |
+
_template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question,
|
130 |
+
in its original language.
|
131 |
+
Chat History:
|
132 |
+
{chat_history}
|
133 |
+
Follow Up Input: {question}
|
134 |
+
Standalone question:"""
|
135 |
+
|
136 |
+
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
|
137 |
+
|
138 |
+
def _format_chat_history(chat_history: list[tuple[str, str]]) -> list:
|
139 |
+
buffer = []
|
140 |
+
for human, ai in chat_history:
|
141 |
+
buffer.append(HumanMessage(content=human))
|
142 |
+
buffer.append(AIMessage(content=ai))
|
143 |
+
return buffer
|
144 |
+
|
145 |
+
_search_query = RunnableBranch(
|
146 |
+
# If input includes chat_history, we condense it with the follow-up question
|
147 |
+
(
|
148 |
+
RunnableLambda(lambda x: bool(x.get("chat_history"))).with_config(
|
149 |
+
run_name="HasChatHistoryCheck"
|
150 |
+
), # Condense follow-up question and chat into a standalone_question
|
151 |
+
RunnablePassthrough.assign(
|
152 |
+
chat_history=lambda x: _format_chat_history(x["chat_history"])
|
153 |
+
)
|
154 |
+
| CONDENSE_QUESTION_PROMPT
|
155 |
+
| ChatOpenAI(temperature=0,openai_api_key="sk-PV6RlpmTifrWo_olwL1IR69J9v2e5AKe-Xfxs_Yf9VT3BlbkFJm-UJQx5RNyGpok9MM_DYSTmayn7y-lKLSBqXecEoYA")
|
156 |
+
| StrOutputParser(),
|
157 |
+
),
|
158 |
+
# Else, we have no chat history, so just pass through the question
|
159 |
+
RunnableLambda(lambda x : x["question"]),
|
160 |
+
)
|
161 |
+
|
162 |
+
|
163 |
+
template = """I am a guide for Birmingham, Alabama. I can provide recommendations and insights about the city, including events and activities.
|
164 |
+
Ask your question directly, and I'll provide a precise and quick,short and crisp response in a conversational way without any Greet.
|
165 |
+
{context}
|
166 |
+
Question: {question}
|
167 |
+
Answer:"""
|
168 |
+
|
169 |
+
|
170 |
+
prompt = ChatPromptTemplate.from_template(template)
|
171 |
+
|
172 |
+
# Define the chain for Neo4j-based retrieval and response generation
|
173 |
+
chain_neo4j = (
|
174 |
+
RunnableParallel(
|
175 |
+
{
|
176 |
+
"context": _search_query | retriever_neo4j,
|
177 |
+
"question": RunnablePassthrough(),
|
178 |
+
}
|
179 |
+
)
|
180 |
+
| prompt
|
181 |
+
| chat_model
|
182 |
+
| StrOutputParser()
|
183 |
+
)
|
184 |
+
|
185 |
+
# Define the function to get the response
|
186 |
+
def get_response(question):
|
187 |
+
try:
|
188 |
+
return chain_neo4j.invoke({"question": question})
|
189 |
+
except Exception as e:
|
190 |
+
return f"Error: {str(e)}"
|
191 |
+
|
192 |
+
# Define the function to clear input and output
|
193 |
+
def clear_fields():
|
194 |
+
return [],"",None
|
195 |
+
|
196 |
# Function to generate audio with Eleven Labs TTS
|
197 |
def generate_audio_elevenlabs(text):
|
198 |
XI_API_KEY = os.environ['ELEVENLABS_API']
|
199 |
VOICE_ID = 'ehbJzYLQFpwbJmGkqbnW'
|
200 |
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
|
201 |
+
headers = {
|
202 |
+
"Accept": "application/json",
|
203 |
+
"xi-api-key": XI_API_KEY
|
204 |
+
}
|
205 |
+
data = {
|
206 |
+
"text": str(text),
|
207 |
+
"model_id": "eleven_multilingual_v2",
|
208 |
+
"voice_settings": {
|
209 |
+
"stability": 1.0,
|
210 |
+
"similarity_boost": 0.0,
|
211 |
+
"style": 0.60,
|
212 |
+
"use_speaker_boost": False
|
213 |
+
}
|
214 |
+
}
|
215 |
response = requests.post(tts_url, headers=headers, json=data, stream=True)
|
216 |
if response.ok:
|
217 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
|
218 |
for chunk in response.iter_content(chunk_size=1024):
|
219 |
if chunk:
|
220 |
f.write(chunk)
|
221 |
+
audio_path = f.name
|
222 |
+
logging.debug(f"Audio saved to {audio_path}")
|
223 |
+
return audio_path # Return audio path for automatic playback
|
224 |
+
else:
|
225 |
+
logging.error(f"Error generating audio: {response.text}")
|
226 |
+
return None
|
227 |
+
|
228 |
+
|
229 |
+
|
230 |
+
def handle_mode_selection(mode, chat_history, question):
|
231 |
+
if mode == "Normal Chatbot":
|
232 |
+
# Append the user's question to chat history first
|
233 |
+
chat_history.append((question, "")) # Placeholder for the bot's response
|
234 |
+
|
235 |
+
# Stream the response and update chat history with each chunk
|
236 |
+
for response_chunk in chat_with_bot(chat_history):
|
237 |
+
chat_history[-1] = (question, response_chunk[-1][1]) # Update last entry with streamed response
|
238 |
+
yield chat_history, "", None # Stream each chunk to display in the chatbot
|
239 |
+
yield chat_history, "", None # Final yield to complete the response
|
240 |
+
|
241 |
+
elif mode == "Voice to Voice Conversation":
|
242 |
+
# Voice to Voice mode: Stream the response text and then convert it to audio
|
243 |
+
response_text = get_response(question) # Retrieve response text
|
244 |
+
audio_path = generate_audio_elevenlabs(response_text) # Convert response to audio
|
245 |
+
yield [], "", audio_path # Only output the audio response without updating chatbot history
|
246 |
+
|
247 |
+
|
248 |
+
# Function to add a user's message to the chat history and clear the input box
|
249 |
+
def add_message(history, message):
|
250 |
+
if message.strip():
|
251 |
+
history.append((message, "")) # Add the user's message to the chat history only if it's not empty
|
252 |
+
return history, "" # Clear the input box
|
253 |
+
|
254 |
+
# Define function to generate a streaming response
|
255 |
+
def chat_with_bot(messages):
|
256 |
+
user_message = messages[-1][0] # Get the last user message (input)
|
257 |
+
messages[-1] = (user_message, "") # Prepare a placeholder for the bot's response
|
258 |
+
|
259 |
+
response = get_response(user_message) # Assume `get_response` is a generator function
|
260 |
+
|
261 |
+
# Stream each character in the response and update the history progressively
|
262 |
+
for character in response:
|
263 |
+
messages[-1] = (user_message, messages[-1][1] + character)
|
264 |
+
yield messages # Stream each updated chunk
|
265 |
+
time.sleep(0.05) # Adjust delay as needed for real-time effect
|
266 |
+
|
267 |
+
yield messages # Final yield to complete the response
|
268 |
+
|
269 |
+
|
270 |
+
|
271 |
+
# Function to generate audio with Eleven Labs TTS from the last bot response
|
272 |
+
def generate_audio_from_last_response(history):
|
273 |
+
# Get the most recent bot response from the chat history
|
274 |
+
if history and len(history) > 0:
|
275 |
+
recent_response = history[-1][1] # The second item in the tuple is the bot response text
|
276 |
+
if recent_response:
|
277 |
+
return generate_audio_elevenlabs(recent_response)
|
278 |
return None
|
279 |
|
280 |
+
# Define example prompts
|
281 |
+
examples = [
|
282 |
+
["What are some popular events in Birmingham?"],
|
283 |
+
["Who are the top players of the Crimson Tide?"],
|
284 |
+
["Where can I find a hamburger?"],
|
285 |
+
["What are some popular tourist attractions in Birmingham?"],
|
286 |
+
["What are some good clubs in Birmingham?"],
|
287 |
+
["Is there a farmer's market or craft fair in Birmingham, Alabama?"],
|
288 |
+
["Are there any special holiday events or parades in Birmingham, Alabama, during December?"],
|
289 |
+
["What are the best places to enjoy live music in Birmingham, Alabama?"]
|
290 |
+
|
291 |
+
]
|
292 |
+
|
293 |
+
# Function to insert the prompt into the textbox when clicked
|
294 |
+
def insert_prompt(current_text, prompt):
|
295 |
+
return prompt[0] if prompt else current_text
|
296 |
+
|
297 |
+
|
298 |
+
# Define the ASR model with Whisper
|
299 |
model_id = 'openai/whisper-large-v3'
|
300 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
301 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
|
|
311 |
chunk_length_s=15,
|
312 |
batch_size=16,
|
313 |
torch_dtype=torch_dtype,
|
314 |
+
device=device,
|
315 |
+
return_timestamps=True
|
316 |
)
|
317 |
|
318 |
+
# Define the function to reset the state after 10 seconds
|
319 |
+
def auto_reset_state():
|
320 |
+
time.sleep(5)
|
321 |
+
return None, "" # Reset the state and clear input text
|
322 |
+
|
323 |
+
|
324 |
+
def transcribe_function(stream, new_chunk):
|
325 |
+
try:
|
326 |
+
sr, y = new_chunk[0], new_chunk[1]
|
327 |
+
except TypeError:
|
328 |
+
print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
|
329 |
+
return stream, "", None
|
330 |
+
|
331 |
+
# Ensure y is not empty and is at least 1-dimensional
|
332 |
+
if y is None or len(y) == 0:
|
333 |
+
return stream, "", None
|
334 |
+
|
335 |
+
y = y.astype(np.float32)
|
336 |
+
max_abs_y = np.max(np.abs(y))
|
337 |
+
if max_abs_y > 0:
|
338 |
+
y = y / max_abs_y
|
339 |
+
|
340 |
+
# Ensure stream is also at least 1-dimensional before concatenation
|
341 |
+
if stream is not None and len(stream) > 0:
|
342 |
+
stream = np.concatenate([stream, y])
|
343 |
+
else:
|
344 |
+
stream = y
|
345 |
+
|
346 |
+
# Process the audio data for transcription
|
347 |
+
result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
|
348 |
+
full_text = result.get("text", "")
|
349 |
+
|
350 |
+
# Start a thread to reset the state after 10 seconds
|
351 |
+
threading.Thread(target=auto_reset_state).start()
|
352 |
+
|
353 |
+
return stream, full_text, full_text
|
354 |
+
|
355 |
+
|
356 |
|
357 |
+
# Define the function to clear the state and input text
|
358 |
+
def clear_transcription_state():
|
359 |
+
return None, ""
|
360 |
|
|
|
|
|
361 |
|
362 |
+
|
363 |
+
with gr.Blocks(theme="rawrsor1/Everforest") as demo:
|
364 |
+
chatbot = gr.Chatbot([], elem_id="RADAR", bubble_full_width=False)
|
365 |
+
with gr.Row():
|
366 |
+
with gr.Column():
|
367 |
+
mode_selection = gr.Radio(
|
368 |
+
choices=["Normal Chatbot", "Voice to Voice Conversation"],
|
369 |
+
label="Mode Selection",
|
370 |
+
value="Normal Chatbot"
|
371 |
+
)
|
372 |
+
with gr.Row():
|
373 |
+
with gr.Column():
|
374 |
+
question_input = gr.Textbox(label="Ask a Question", placeholder="Type your question here...")
|
375 |
+
audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', every=0.1, label="Speak to Ask")
|
376 |
+
submit_voice_btn = gr.Button("Submit Voice")
|
377 |
+
|
378 |
+
with gr.Column():
|
379 |
+
audio_output = gr.Audio(label="Audio", type="filepath", autoplay=True, interactive=False)
|
380 |
+
|
381 |
+
with gr.Row():
|
382 |
+
with gr.Column():
|
383 |
+
get_response_btn = gr.Button("Get Response")
|
384 |
+
with gr.Column():
|
385 |
+
clear_state_btn = gr.Button("Clear State")
|
386 |
+
with gr.Column():
|
387 |
+
generate_audio_btn = gr.Button("Generate Audio")
|
388 |
+
with gr.Column():
|
389 |
+
clean_btn = gr.Button("Clean")
|
390 |
+
|
391 |
+
with gr.Row():
|
392 |
+
with gr.Column():
|
393 |
+
gr.Markdown("<h1 style='color: red;'>Example Prompts</h1>", elem_id="Example-Prompts")
|
394 |
+
gr.Examples(examples=examples, fn=insert_prompt, inputs=question_input, outputs=question_input, api_name="api_insert_example")
|
395 |
+
|
396 |
+
|
397 |
+
# Define interactions for the Get Response button
|
398 |
+
get_response_btn.click(
|
399 |
+
fn=handle_mode_selection,
|
400 |
+
inputs=[mode_selection, chatbot, question_input],
|
401 |
+
outputs=[chatbot, question_input, audio_output],
|
402 |
+
api_name="api_add_message_on_button_click"
|
403 |
+
)
|
404 |
+
|
405 |
+
|
406 |
+
|
407 |
+
|
408 |
+
question_input.submit(
|
409 |
+
fn=handle_mode_selection,
|
410 |
+
inputs=[mode_selection, chatbot, question_input],
|
411 |
+
outputs=[chatbot, question_input, audio_output],
|
412 |
+
api_name="api_add_message_on_enter"
|
413 |
+
)
|
414 |
+
|
415 |
+
|
416 |
+
submit_voice_btn.click(
|
417 |
+
fn=handle_mode_selection,
|
418 |
+
inputs=[mode_selection, chatbot, question_input],
|
419 |
+
outputs=[chatbot, question_input, audio_output],
|
420 |
+
api_name="api_voice_to_voice_translation"
|
421 |
+
)
|
422 |
+
|
423 |
+
|
424 |
+
|
425 |
+
# Speech-to-Text functionality
|
426 |
+
state = gr.State()
|
427 |
+
audio_input.stream(
|
428 |
+
transcribe_function,
|
429 |
+
inputs=[state, audio_input],
|
430 |
+
outputs=[state, question_input],
|
431 |
+
api_name="api_voice_to_text"
|
432 |
+
)
|
433 |
|
434 |
+
generate_audio_btn.click(
|
435 |
+
fn=generate_audio_from_last_response,
|
436 |
+
inputs=chatbot,
|
437 |
+
outputs=audio_output,
|
438 |
+
api_name="api_generate_text_to_audio"
|
439 |
+
)
|
440 |
|
441 |
+
clean_btn.click(
|
442 |
+
fn=clear_fields,
|
443 |
+
inputs=[],
|
444 |
+
outputs=[chatbot, question_input, audio_output],
|
445 |
+
api_name="api_clear_textbox"
|
446 |
+
)
|
447 |
+
|
448 |
+
# Clear state interaction
|
449 |
+
clear_state_btn.click(
|
450 |
+
fn=clear_transcription_state,
|
451 |
+
outputs=[question_input, state],
|
452 |
+
api_name="api_clean_state_transcription"
|
453 |
)
|
454 |
|
455 |
+
# Launch the Gradio interface
|
456 |
+
demo.launch(show_error=True,share=True)
|